The Schouten-van Kampen Affine Connections Adapted to Almost (Para)Contact Metric Structures
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 31
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study the Schouten-van Kampen connection, which is one of the most natural and important connection adapted to a pair of distributions on a differentiable manifold. Especially, we are interested on Schouten-van Kampen connections which are adapted to almost contact metric as well as almost paracontact metric structures. With the help of such a connection, we find necessary and sufficient conditions for an almost (para) contact structure to be normal, or (para) contact, or (para-)Sasakian.
Classification :
53C25 53C07 53C15 53D15
Keywords: Schouten-van Kampen affine connection, almost contact metric manifold, almost paracontact metric manifold, distribution
Keywords: Schouten-van Kampen affine connection, almost contact metric manifold, almost paracontact metric manifold, distribution
@article{PIM_2013_N_S_94_108_a2,
author = {Zbigniew Olszak},
title = {The {Schouten-van} {Kampen} {Affine} {Connections} {Adapted} to {Almost} {(Para)Contact} {Metric} {Structures}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
year = {2013},
volume = {_N_S_94},
number = {108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a2/}
}
TY - JOUR AU - Zbigniew Olszak TI - The Schouten-van Kampen Affine Connections Adapted to Almost (Para)Contact Metric Structures JO - Publications de l'Institut Mathématique PY - 2013 SP - 31 VL - _N_S_94 IS - 108 UR - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a2/ LA - en ID - PIM_2013_N_S_94_108_a2 ER -
Zbigniew Olszak. The Schouten-van Kampen Affine Connections Adapted to Almost (Para)Contact Metric Structures. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 31 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a2/