Duality Principle and Special Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 197 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate the connection between the duality principle and the Osserman condition in a pseudo-Riemannian setting. We prove that a connected pointwise two-leaves Osserman manifold of dimension $n\geq 5$ is globally Osserman and investigate the relation between the special Osserman condition and the two-leaves Osserman one.
Classification : 53C50 53B30
@article{PIM_2013_N_S_94_108_a19,
     author = {Vladica Andreji\'c},
     title = {Duality {Principle} and {Special} {Osserman} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {197 },
     publisher = {mathdoc},
     volume = {_N_S_94},
     number = {108},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a19/}
}
TY  - JOUR
AU  - Vladica Andrejić
TI  - Duality Principle and Special Osserman Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 197 
VL  - _N_S_94
IS  - 108
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a19/
LA  - en
ID  - PIM_2013_N_S_94_108_a19
ER  - 
%0 Journal Article
%A Vladica Andrejić
%T Duality Principle and Special Osserman Manifolds
%J Publications de l'Institut Mathématique
%D 2013
%P 197 
%V _N_S_94
%N 108
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a19/
%G en
%F PIM_2013_N_S_94_108_a19
Vladica Andrejić. Duality Principle and Special Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 197 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a19/