Duality Principle and Special Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 197
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the connection between the duality principle and the Osserman condition in a pseudo-Riemannian setting. We prove that a connected pointwise two-leaves Osserman manifold of dimension $n\geq 5$ is globally Osserman and investigate the relation between the special Osserman condition and the two-leaves Osserman one.
Classification :
53C50 53B30
@article{PIM_2013_N_S_94_108_a19,
author = {Vladica Andreji\'c},
title = {Duality {Principle} and {Special} {Osserman} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {197 },
year = {2013},
volume = {_N_S_94},
number = {108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a19/}
}
Vladica Andrejić. Duality Principle and Special Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 197 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a19/