Fixed Points and D-branes
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 169 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The affine Kac-Moody algebras give rise to rational conformal field theories (RCFTs) called the Wess-Zumino-Witten (WZW) models. An important component of an RCFT is its fusion ring, whose structure constants are given by the associated $S$-matrix. We apply a fixed point property possessed by the WZW models (``fixed point factorization") to calculate non-negative integer matrix representations of the fusion ring, allowing for the calculation of D-brane charges in string theory.
Classification : 17B81
@article{PIM_2013_N_S_94_108_a16,
     author = {Elaine Beltaos},
     title = {Fixed {Points} and {D-branes}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {169 },
     publisher = {mathdoc},
     volume = {_N_S_94},
     number = {108},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a16/}
}
TY  - JOUR
AU  - Elaine Beltaos
TI  - Fixed Points and D-branes
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 169 
VL  - _N_S_94
IS  - 108
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a16/
LA  - en
ID  - PIM_2013_N_S_94_108_a16
ER  - 
%0 Journal Article
%A Elaine Beltaos
%T Fixed Points and D-branes
%J Publications de l'Institut Mathématique
%D 2013
%P 169 
%V _N_S_94
%N 108
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a16/
%G en
%F PIM_2013_N_S_94_108_a16
Elaine Beltaos. Fixed Points and D-branes. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 169 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a16/