Quadratic Level Quasigroup Equations With Four Variables II: the Lattice of Varieties
Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider a class of quasigroup identities (with one operation symbol) of the form $x_1x_2\cdot x_3x_4=x_5x_6\cdot x_7x_8$ and with $x_i\in\{x,y,u,v\}$ ($1\leq i\leq8)$ with each of the variables occurring exactly twice in the identity. There are 105 such identities. They generate 26 quasigroup varieties. The lattice of these varieties is given.
Classification : 20N05 08B15 39B52
Keywords: quasigroup, quasigroup functional equation, quadratic level quasigroup equation, quasigroup identity, quasigroup variety, lattice of varieties
@article{PIM_2013_N_S_93_107_a2,
     author = {Aleksandar Krape\v{z}},
     title = {Quadratic {Level} {Quasigroup} {Equations} {With} {Four} {Variables} {II:} the {Lattice} of {Varieties}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {29 },
     publisher = {mathdoc},
     volume = {_N_S_93},
     number = {107},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a2/}
}
TY  - JOUR
AU  - Aleksandar Krapež
TI  - Quadratic Level Quasigroup Equations With Four Variables II: the Lattice of Varieties
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 29 
VL  - _N_S_93
IS  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a2/
LA  - en
ID  - PIM_2013_N_S_93_107_a2
ER  - 
%0 Journal Article
%A Aleksandar Krapež
%T Quadratic Level Quasigroup Equations With Four Variables II: the Lattice of Varieties
%J Publications de l'Institut Mathématique
%D 2013
%P 29 
%V _N_S_93
%N 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a2/
%G en
%F PIM_2013_N_S_93_107_a2
Aleksandar Krapež. Quadratic Level Quasigroup Equations With Four Variables II: the Lattice of Varieties. Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 29 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a2/