Some New Multidimensional Hardy-type Inequalities With Kernels Via Convexity
Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 153
We prove some new multidimensional Hardy-type inequalities involving general Hardy type operators with positive kernels for functions $\phi$ which may not necessarily be convex but satisfy the condition $A\psi(\x)\leq\phi(\x)\leq B\psi(\x)$, where $\psi $ is convex. Our approach is mainly the use of convexity argument and the results obtained are new even for the one-dimensional case and also unify and extend several inequalities of Hardy type known in the literature.
Classification :
26D10 26D15
Keywords: Multidimensional Hardy type inequalities, convexity argument, general Hardy type operator, kernels, weight functions
Keywords: Multidimensional Hardy type inequalities, convexity argument, general Hardy type operator, kernels, weight functions
@article{PIM_2013_N_S_93_107_a12,
author = {James A. Oguntuase and Philip Durojaye},
title = {Some {New} {Multidimensional} {Hardy-type} {Inequalities} {With} {Kernels} {Via} {Convexity}},
journal = {Publications de l'Institut Math\'ematique},
pages = {153 },
year = {2013},
volume = {_N_S_93},
number = {107},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a12/}
}
TY - JOUR AU - James A. Oguntuase AU - Philip Durojaye TI - Some New Multidimensional Hardy-type Inequalities With Kernels Via Convexity JO - Publications de l'Institut Mathématique PY - 2013 SP - 153 VL - _N_S_93 IS - 107 UR - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a12/ LA - en ID - PIM_2013_N_S_93_107_a12 ER -
%0 Journal Article %A James A. Oguntuase %A Philip Durojaye %T Some New Multidimensional Hardy-type Inequalities With Kernels Via Convexity %J Publications de l'Institut Mathématique %D 2013 %P 153 %V _N_S_93 %N 107 %U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a12/ %G en %F PIM_2013_N_S_93_107_a12
James A. Oguntuase; Philip Durojaye. Some New Multidimensional Hardy-type Inequalities With Kernels Via Convexity. Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 153 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a12/