$L$-Ponomarev's System and Images of Locally Separable Metric Spaces
Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 133

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce the notion of an $L$-Ponomarev system $(f,M,X,\mathcal P_n^*)$, and give characterizations of certain msss-images (resp., mssc-images) of locally separable metric spaces. As an application, we get a new characterization of quotient msss-images (mssc-images) of locally separable metric spaces, which is helpful in solving Velichko's question (1987).
Classification : 54C10 54D55 54E40 54E99
Keywords: so-network, sn-network, cs-network, cfp-network, cs$^*$-network, 2-sequence-covering, 1-sequence-covering, sequence-covering, compact-covering, sequentially-quotient, msss-map, mssc-map
@article{PIM_2013_N_S_93_107_a10,
     author = {Tran Van An and Luong Quoc Tuyen},
     title = {$L${-Ponomarev's} {System} and {Images} of {Locally} {Separable} {Metric} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {133 },
     publisher = {mathdoc},
     volume = {_N_S_93},
     number = {107},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/}
}
TY  - JOUR
AU  - Tran Van An
AU  - Luong Quoc Tuyen
TI  - $L$-Ponomarev's System and Images of Locally Separable Metric Spaces
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 133 
VL  - _N_S_93
IS  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/
LA  - en
ID  - PIM_2013_N_S_93_107_a10
ER  - 
%0 Journal Article
%A Tran Van An
%A Luong Quoc Tuyen
%T $L$-Ponomarev's System and Images of Locally Separable Metric Spaces
%J Publications de l'Institut Mathématique
%D 2013
%P 133 
%V _N_S_93
%N 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/
%G en
%F PIM_2013_N_S_93_107_a10
Tran Van An; Luong Quoc Tuyen. $L$-Ponomarev's System and Images of Locally Separable Metric Spaces. Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 133 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/