$L$-Ponomarev's System and Images of Locally Separable Metric Spaces
Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 133 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce the notion of an $L$-Ponomarev system $(f,M,X,\mathcal P_n^*)$, and give characterizations of certain msss-images (resp., mssc-images) of locally separable metric spaces. As an application, we get a new characterization of quotient msss-images (mssc-images) of locally separable metric spaces, which is helpful in solving Velichko's question (1987).
Classification : 54C10 54D55 54E40 54E99
Keywords: so-network, sn-network, cs-network, cfp-network, cs$^*$-network, 2-sequence-covering, 1-sequence-covering, sequence-covering, compact-covering, sequentially-quotient, msss-map, mssc-map
@article{PIM_2013_N_S_93_107_a10,
     author = {Tran Van An and Luong Quoc Tuyen},
     title = {$L${-Ponomarev's} {System} and {Images} of {Locally} {Separable} {Metric} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {133 },
     publisher = {mathdoc},
     volume = {_N_S_93},
     number = {107},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/}
}
TY  - JOUR
AU  - Tran Van An
AU  - Luong Quoc Tuyen
TI  - $L$-Ponomarev's System and Images of Locally Separable Metric Spaces
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 133 
VL  - _N_S_93
IS  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/
LA  - en
ID  - PIM_2013_N_S_93_107_a10
ER  - 
%0 Journal Article
%A Tran Van An
%A Luong Quoc Tuyen
%T $L$-Ponomarev's System and Images of Locally Separable Metric Spaces
%J Publications de l'Institut Mathématique
%D 2013
%P 133 
%V _N_S_93
%N 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/
%G en
%F PIM_2013_N_S_93_107_a10
Tran Van An; Luong Quoc Tuyen. $L$-Ponomarev's System and Images of Locally Separable Metric Spaces. Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 133 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a10/