On the Class Gamma and Related Classes of Functions
Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The gamma class $\Gamma_{\alpha}(g)$ consists of positive and measurable functions that satisfy $f(x+yg(x))/f(x)\to\exp(\alpha y)$. In most cases the auxiliary function $g$ is Beurling varying and self-neglecting, i.e., $g(x)/x\to0$ and $g\in\Gamma_0(g)$. Taking $h=\log f$, we find that $h\in E\Gamma_{\alpha}(g,1)$, where $E\Gamma_{\alpha}(g,a)$ is the class of positive and measurable functions that satisfy $(f(x+yg(x))-f(x))/a(x)olpha y$. In this paper we discuss local uniform convergence for functions in the classes $\Gamma_{\alpha}(g)$ and $E\Gamma_{\alpha}(g,a)$. From this, we obtain several representation theorems. We also prove some higher order relations for functions in the class $\Gamma_{\alpha}(g)$ and related classes. Two applications are given.
Classification : 26A12 33B99 39B22 34D05
Keywords: Beurling variation, the class gamma, local uniform convergence, remainder terms, differential equations, growth of functions
@article{PIM_2013_N_S_93_107_a0,
     author = {Edward Omey},
     title = {On the {Class} {Gamma} and {Related} {Classes} of {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_93},
     number = {107},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a0/}
}
TY  - JOUR
AU  - Edward Omey
TI  - On the Class Gamma and Related Classes of Functions
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 1 
VL  - _N_S_93
IS  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a0/
LA  - en
ID  - PIM_2013_N_S_93_107_a0
ER  - 
%0 Journal Article
%A Edward Omey
%T On the Class Gamma and Related Classes of Functions
%J Publications de l'Institut Mathématique
%D 2013
%P 1 
%V _N_S_93
%N 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a0/
%G en
%F PIM_2013_N_S_93_107_a0
Edward Omey. On the Class Gamma and Related Classes of Functions. Publications de l'Institut Mathématique, _N_S_93 (2013) no. 107, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_93_107_a0/