Sharp Function Inequalities and Boundness for Toeplitz Type Operator Related to General Fractional Singular Integral Operator
Publications de l'Institut Mathématique, _N_S_92 (2012) no. 106, p. 165 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We establish some sharp maximal function inequalities for the Toeplitz type operator, which is related to certain fractional singular integral operator with general kernel. These results are helpful to investigate the boundedness of the operator on Lebesgue, Morrey and Triebel-Lizorkin spaces respectively.
Classification : 42B20 42B25
@article{PIM_2012_N_S_92_106_a13,
     author = {Chuangxia Huang and Lanzhe Liu},
     title = {Sharp {Function} {Inequalities} and {Boundness} for {Toeplitz} {Type} {Operator} {Related} to {General} {Fractional} {Singular} {Integral} {Operator}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {165 },
     publisher = {mathdoc},
     volume = {_N_S_92},
     number = {106},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a13/}
}
TY  - JOUR
AU  - Chuangxia Huang
AU  - Lanzhe Liu
TI  - Sharp Function Inequalities and Boundness for Toeplitz Type Operator Related to General Fractional Singular Integral Operator
JO  - Publications de l'Institut Mathématique
PY  - 2012
SP  - 165 
VL  - _N_S_92
IS  - 106
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a13/
LA  - en
ID  - PIM_2012_N_S_92_106_a13
ER  - 
%0 Journal Article
%A Chuangxia Huang
%A Lanzhe Liu
%T Sharp Function Inequalities and Boundness for Toeplitz Type Operator Related to General Fractional Singular Integral Operator
%J Publications de l'Institut Mathématique
%D 2012
%P 165 
%V _N_S_92
%N 106
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a13/
%G en
%F PIM_2012_N_S_92_106_a13
Chuangxia Huang; Lanzhe Liu. Sharp Function Inequalities and Boundness for Toeplitz Type Operator Related to General Fractional Singular Integral Operator. Publications de l'Institut Mathématique, _N_S_92 (2012) no. 106, p. 165 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a13/