Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present an overview of a result by Yuli{\u\i} Andreevich Dubinski{\u\i} [Mat.~Sb. 67 (109) (1965); translated in Amer.~Math.~Soc.~Transl. (2) 67 (1968)], concerning the compact embedding of a seminormed set in $L^p(0,T;\cA_0)$, where $\mathcal{A}_0$ is a Banach space and $p\in[1,\infty]$; we establish a variant of Dubinski{\u\i}'s theorem, where a seminormed nonnegative cone is used instead of a seminormed set; and we explore the connections of these results with a nonlinear compact embedding theorem due to Emmanuel Maitre [Int.~J.~Math. Math. Sci. 27 (2003)].
Classification : 46B50 46E40 35K99
@article{PIM_2012_N_S_91_105_a8,
     author = {John W. Barrett and Endre S\"uli},
     title = {Reflections on {Dubinski\u{i}'s} {Nonlinear} {Compact} {Embedding} {Theorem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {95 },
     publisher = {mathdoc},
     volume = {_N_S_91},
     number = {105},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/}
}
TY  - JOUR
AU  - John W. Barrett
AU  - Endre Süli
TI  - Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
JO  - Publications de l'Institut Mathématique
PY  - 2012
SP  - 95 
VL  - _N_S_91
IS  - 105
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/
LA  - en
ID  - PIM_2012_N_S_91_105_a8
ER  - 
%0 Journal Article
%A John W. Barrett
%A Endre Süli
%T Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
%J Publications de l'Institut Mathématique
%D 2012
%P 95 
%V _N_S_91
%N 105
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/
%G en
%F PIM_2012_N_S_91_105_a8
John W. Barrett; Endre Süli. Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/