Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present an overview of a result by Yuli{\u\i} Andreevich Dubinski{\u\i} [Mat.~Sb. 67 (109) (1965); translated in Amer.~Math.~Soc.~Transl. (2) 67 (1968)], concerning the compact embedding of a seminormed set in $L^p(0,T;\cA_0)$, where $\mathcal{A}_0$ is a Banach space and $p\in[1,\infty]$; we establish a variant of Dubinski{\u\i}'s theorem, where a seminormed nonnegative cone is used instead of a seminormed set; and we explore the connections of these results with a nonlinear compact embedding theorem due to Emmanuel Maitre [Int.~J.~Math. Math. Sci. 27 (2003)].
Classification : 46B50 46E40 35K99
@article{PIM_2012_N_S_91_105_a8,
     author = {John W. Barrett and Endre S\"uli},
     title = {Reflections on {Dubinski\u{i}'s} {Nonlinear} {Compact} {Embedding} {Theorem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {95 },
     publisher = {mathdoc},
     volume = {_N_S_91},
     number = {105},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/}
}
TY  - JOUR
AU  - John W. Barrett
AU  - Endre Süli
TI  - Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
JO  - Publications de l'Institut Mathématique
PY  - 2012
SP  - 95 
VL  - _N_S_91
IS  - 105
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/
LA  - en
ID  - PIM_2012_N_S_91_105_a8
ER  - 
%0 Journal Article
%A John W. Barrett
%A Endre Süli
%T Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
%J Publications de l'Institut Mathématique
%D 2012
%P 95 
%V _N_S_91
%N 105
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/
%G en
%F PIM_2012_N_S_91_105_a8
John W. Barrett; Endre Süli. Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/