Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present an overview of a result by Yuli{\u\i} Andreevich Dubinski{\u\i} [Mat.~Sb. 67 (109) (1965); translated in Amer.~Math.~Soc.~Transl. (2) 67 (1968)], concerning the compact embedding of a seminormed set in $L^p(0,T;\cA_0)$, where $\mathcal{A}_0$ is a Banach space and $p\in[1,\infty]$; we establish a variant of Dubinski{\u\i}'s theorem, where a seminormed nonnegative cone is used instead of a seminormed set; and we explore the connections of these results with a nonlinear compact embedding theorem due to Emmanuel Maitre [Int.~J.~Math. Math. Sci. 27 (2003)].
Classification :
46B50 46E40 35K99
@article{PIM_2012_N_S_91_105_a8,
author = {John W. Barrett and Endre S\"uli},
title = {Reflections on {Dubinski\u{i}'s} {Nonlinear} {Compact} {Embedding} {Theorem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {95 },
year = {2012},
volume = {_N_S_91},
number = {105},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/}
}
TY - JOUR AU - John W. Barrett AU - Endre Süli TI - Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem JO - Publications de l'Institut Mathématique PY - 2012 SP - 95 VL - _N_S_91 IS - 105 UR - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/ LA - en ID - PIM_2012_N_S_91_105_a8 ER -
John W. Barrett; Endre Süli. Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/