Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present an overview of a result by Yuli{\u\i} Andreevich Dubinski{\u\i} [Mat.~Sb. 67 (109) (1965); translated in Amer.~Math.~Soc.~Transl. (2) 67 (1968)], concerning the compact embedding of a seminormed set in $L^p(0,T;\cA_0)$, where $\mathcal{A}_0$ is a Banach space and $p\in[1,\infty]$; we establish a variant of Dubinski{\u\i}'s theorem, where a seminormed nonnegative cone is used instead of a seminormed set; and we explore the connections of these results with a nonlinear compact embedding theorem due to Emmanuel Maitre [Int.~J.~Math. Math. Sci. 27 (2003)].
Classification :
46B50 46E40 35K99
@article{PIM_2012_N_S_91_105_a8,
author = {John W. Barrett and Endre S\"uli},
title = {Reflections on {Dubinski\u{i}'s} {Nonlinear} {Compact} {Embedding} {Theorem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {95 },
publisher = {mathdoc},
volume = {_N_S_91},
number = {105},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/}
}
TY - JOUR AU - John W. Barrett AU - Endre Süli TI - Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem JO - Publications de l'Institut Mathématique PY - 2012 SP - 95 VL - _N_S_91 IS - 105 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/ LA - en ID - PIM_2012_N_S_91_105_a8 ER -
John W. Barrett; Endre Süli. Reflections on Dubinskiĭ's Nonlinear Compact Embedding Theorem. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 95 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a8/