Algebro-geometric Approach to the Yang-Baxter Equation and Related Topics
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 25
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We review the results of algebro-geometric approach to $4\times 4$ solutions of the Yang-Baxter equation. We emphasis some further geometric properties, connected with the double-reflection theorem, the Poncelet porism and the Euler-Chasles correspondence. We present a list of classifications in Mathematical Physics with a similar geometric background, related to pencils of conics. In the conclusion, we introduce a notion of discriminantly factorizable polynomials as a result of a computational experiment with elementary $n$-valued groups.
Classification :
14H70 82B23 37J35 39A12
@article{PIM_2012_N_S_91_105_a3,
author = {Vladimir Dragovi\'c},
title = {Algebro-geometric {Approach} to the {Yang-Baxter} {Equation} and {Related} {Topics}},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
publisher = {mathdoc},
volume = {_N_S_91},
number = {105},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a3/}
}
TY - JOUR AU - Vladimir Dragović TI - Algebro-geometric Approach to the Yang-Baxter Equation and Related Topics JO - Publications de l'Institut Mathématique PY - 2012 SP - 25 VL - _N_S_91 IS - 105 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a3/ LA - en ID - PIM_2012_N_S_91_105_a3 ER -
Vladimir Dragović. Algebro-geometric Approach to the Yang-Baxter Equation and Related Topics. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 25 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a3/