Ehresmann Connection in the Geometry of Nonholonomic Systems
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 19
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This article deals with a dynamic system whose motion is constrained by nonholonomic, reonomic, affine constraints. The article analyses the geometrical properties of the ``reactions" of nonholonomic constraints in Voronets's equations of motion. The analysis shows their link with the torsion of the Ehresmann connection, which is defined by the nonholonomic constraints.
Classification :
37J60 70F25
@article{PIM_2012_N_S_91_105_a2,
author = {Aleksandar Bak\v{s}a},
title = {Ehresmann {Connection} in the {Geometry} of {Nonholonomic} {Systems}},
journal = {Publications de l'Institut Math\'ematique},
pages = {19 },
year = {2012},
volume = {_N_S_91},
number = {105},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/}
}
Aleksandar Bakša. Ehresmann Connection in the Geometry of Nonholonomic Systems. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 19 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/