Ehresmann Connection in the Geometry of Nonholonomic Systems
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 19 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This article deals with a dynamic system whose motion is constrained by nonholonomic, reonomic, affine constraints. The article analyses the geometrical properties of the ``reactions" of nonholonomic constraints in Voronets's equations of motion. The analysis shows their link with the torsion of the Ehresmann connection, which is defined by the nonholonomic constraints.
Classification : 37J60 70F25
@article{PIM_2012_N_S_91_105_a2,
     author = {Aleksandar Bak\v{s}a},
     title = {Ehresmann {Connection} in the {Geometry} of {Nonholonomic} {Systems}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {19 },
     publisher = {mathdoc},
     volume = {_N_S_91},
     number = {105},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/}
}
TY  - JOUR
AU  - Aleksandar Bakša
TI  - Ehresmann Connection in the Geometry of Nonholonomic Systems
JO  - Publications de l'Institut Mathématique
PY  - 2012
SP  - 19 
VL  - _N_S_91
IS  - 105
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/
LA  - en
ID  - PIM_2012_N_S_91_105_a2
ER  - 
%0 Journal Article
%A Aleksandar Bakša
%T Ehresmann Connection in the Geometry of Nonholonomic Systems
%J Publications de l'Institut Mathématique
%D 2012
%P 19 
%V _N_S_91
%N 105
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/
%G en
%F PIM_2012_N_S_91_105_a2
Aleksandar Bakša. Ehresmann Connection in the Geometry of Nonholonomic Systems. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 19 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/