Ehresmann Connection in the Geometry of Nonholonomic Systems
Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 19

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This article deals with a dynamic system whose motion is constrained by nonholonomic, reonomic, affine constraints. The article analyses the geometrical properties of the ``reactions" of nonholonomic constraints in Voronets's equations of motion. The analysis shows their link with the torsion of the Ehresmann connection, which is defined by the nonholonomic constraints.
Classification : 37J60 70F25
@article{PIM_2012_N_S_91_105_a2,
     author = {Aleksandar Bak\v{s}a},
     title = {Ehresmann {Connection} in the {Geometry} of {Nonholonomic} {Systems}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {19 },
     publisher = {mathdoc},
     volume = {_N_S_91},
     number = {105},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/}
}
TY  - JOUR
AU  - Aleksandar Bakša
TI  - Ehresmann Connection in the Geometry of Nonholonomic Systems
JO  - Publications de l'Institut Mathématique
PY  - 2012
SP  - 19 
VL  - _N_S_91
IS  - 105
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/
LA  - en
ID  - PIM_2012_N_S_91_105_a2
ER  - 
%0 Journal Article
%A Aleksandar Bakša
%T Ehresmann Connection in the Geometry of Nonholonomic Systems
%J Publications de l'Institut Mathématique
%D 2012
%P 19 
%V _N_S_91
%N 105
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/
%G en
%F PIM_2012_N_S_91_105_a2
Aleksandar Bakša. Ehresmann Connection in the Geometry of Nonholonomic Systems. Publications de l'Institut Mathématique, _N_S_91 (2012) no. 105, p. 19 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_91_105_a2/