2-normed Algebras-II
Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 135
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In \cite{Srivastava}, we have given a new definition of real or complex 2-normed algebras and 2-Banach algebras. Here we give two examples which establish that not all 2-normed algebras are normable and a 2-Banach algebra need not be a 2-Banach space. We conclude by deriving a new and interesting spectral radius formula for 1-Banach algebras from the basic properties of 2-Banach algebras and thus vindicating our definitions of 2-normed and 2-Banach algebras given in \cite{Srivastava}.
Classification :
46A 46H
@article{PIM_2011_N_S_90_104_a9,
author = {Neeraj Srivastava and S. Bhattacharya and S. N. Lal},
title = {2-normed {Algebras-II}},
journal = {Publications de l'Institut Math\'ematique},
pages = {135 },
publisher = {mathdoc},
volume = {_N_S_90},
number = {104},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a9/}
}
Neeraj Srivastava; S. Bhattacharya; S. N. Lal. 2-normed Algebras-II. Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 135 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a9/