2-normed Algebras-II
Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 135 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In \cite{Srivastava}, we have given a new definition of real or complex 2-normed algebras and 2-Banach algebras. Here we give two examples which establish that not all 2-normed algebras are normable and a 2-Banach algebra need not be a 2-Banach space. We conclude by deriving a new and interesting spectral radius formula for 1-Banach algebras from the basic properties of 2-Banach algebras and thus vindicating our definitions of 2-normed and 2-Banach algebras given in \cite{Srivastava}.
Classification : 46A 46H
@article{PIM_2011_N_S_90_104_a9,
     author = {Neeraj Srivastava and S. Bhattacharya and S. N. Lal},
     title = {2-normed {Algebras-II}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {135 },
     publisher = {mathdoc},
     volume = {_N_S_90},
     number = {104},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a9/}
}
TY  - JOUR
AU  - Neeraj Srivastava
AU  - S. Bhattacharya
AU  - S. N. Lal
TI  - 2-normed Algebras-II
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 135 
VL  - _N_S_90
IS  - 104
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a9/
LA  - en
ID  - PIM_2011_N_S_90_104_a9
ER  - 
%0 Journal Article
%A Neeraj Srivastava
%A S. Bhattacharya
%A S. N. Lal
%T 2-normed Algebras-II
%J Publications de l'Institut Mathématique
%D 2011
%P 135 
%V _N_S_90
%N 104
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a9/
%G en
%F PIM_2011_N_S_90_104_a9
Neeraj Srivastava; S. Bhattacharya; S. N. Lal. 2-normed Algebras-II. Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 135 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a9/