Sets and Posets with Inversions
Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 111
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate unary operations $\lor$, $\land$ and $\lozenge$ on a set $X$ satisfying $x=x^{\lor\lor}=x^{\land\land}$ and $x^{\lozenge}=x^{\lor\land}=x^{\land\lor}$ for all $x\in X$. Moreover, if in particular $X$ is a meet-semilattice, then we also investigate the operations defined by $ lignat 3 x_{ḻacktriangledown}=xand x^{or}, x_{ḻacktriangle}=xand x^{and}, x_{ḻacklozenge}=xand x^{ozenge};
x_{\bullet}=x^{or}and x^{and},\quad x_{ļubsuit}=x^{or}and x^{ozenge},\quad x_{padesuit}=x^{and}and x^{ozenge}; \endalignat $ and $x_{\bigstar}=x\land x^{\lor}\land x^{\land}\land x^{\lozenge}$ for all $x\in X$. Our prime example for this is the set-lattice $\Cal{P}(U,V)$ of all relations on one group $U$ to another $V$ equipped with the operations defined such that $ F^{or}(u)=F(-u), \quad F^{and}(u)=-F(u) \quad ext{and} \quad F^{ozenge}(u)=-F(-u) $ for all $F\subset X\times Y$ and $u\in U$.
Classification :
06A06 06A11 06A12 20M15
@article{PIM_2011_N_S_90_104_a7,
author = {\'Arp\'ad Sz\'az},
title = {Sets and {Posets} with {Inversions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {111 },
year = {2011},
volume = {_N_S_90},
number = {104},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a7/}
}
Árpád Száz. Sets and Posets with Inversions. Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 111 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a7/