Borel Sets and Countable Models
Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We show that certain families of sets and functions related to a countable structure $\Bbb{A}$ are analytic subsets of a Polish space. Examples include sets of automorphisms, endomorphisms and congruences of $\Bbb{A}$ and sets of the combinatorial nature such as coloring of countable plain graphs and domino tiling of the plane. This implies, without any additional set-theoretical assumptions, i.e., in ZFC alone, that cardinality of every such uncountable set is $2^{\aleph_0}$.
Classification :
03C07
@article{PIM_2011_N_S_90_104_a0,
author = {\v{Z}arko Mijajlovi\'c and Dragan Doder and Angelina Ili\'c-Stepi\'c},
title = {Borel {Sets} and {Countable} {Models}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
year = {2011},
volume = {_N_S_90},
number = {104},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a0/}
}
Žarko Mijajlović; Dragan Doder; Angelina Ilić-Stepić. Borel Sets and Countable Models. Publications de l'Institut Mathématique, _N_S_90 (2011) no. 104, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_90_104_a0/