On Roots of Polynomials with Positive Coefficients
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 89 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\alpha $ be an algebraic number with no nonnegative conjugates over the field of the rationals. Settling a recent conjecture of Kuba, Dubickas proved that the number $\alpha$ is a root of a polynomial, say $P$, with positive rational coefficients. We give in this note an upper bound for the degree of $P$ in terms of the discriminant, the degree and the Mahler measure of $\alpha$; this answers a question of Dubickas.
Classification : 11R04 12D10 11R06
@article{PIM_2011_N_S_89_103_a8,
     author = {Toufik Za{\"\i}mi},
     title = {On {Roots} of {Polynomials} with {Positive} {Coefficients}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {89 },
     publisher = {mathdoc},
     volume = {_N_S_89},
     number = {103},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a8/}
}
TY  - JOUR
AU  - Toufik Zaïmi
TI  - On Roots of Polynomials with Positive Coefficients
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 89 
VL  - _N_S_89
IS  - 103
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a8/
LA  - en
ID  - PIM_2011_N_S_89_103_a8
ER  - 
%0 Journal Article
%A Toufik Zaïmi
%T On Roots of Polynomials with Positive Coefficients
%J Publications de l'Institut Mathématique
%D 2011
%P 89 
%V _N_S_89
%N 103
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a8/
%G en
%F PIM_2011_N_S_89_103_a8
Toufik Zaïmi. On Roots of Polynomials with Positive Coefficients. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 89 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a8/