On Roots of Polynomials with Positive Coefficients
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 89
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\alpha $ be an algebraic number with no nonnegative conjugates over the field of the rationals. Settling a recent conjecture of Kuba, Dubickas proved that the number $\alpha$ is a root of a polynomial, say $P$, with positive rational coefficients. We give in this note an upper bound for the degree of $P$ in terms of the discriminant, the degree and the Mahler measure of $\alpha$; this answers a question of Dubickas.
Classification :
11R04 12D10 11R06
@article{PIM_2011_N_S_89_103_a8,
author = {Toufik Za{\"\i}mi},
title = {On {Roots} of {Polynomials} with {Positive} {Coefficients}},
journal = {Publications de l'Institut Math\'ematique},
pages = {89 },
publisher = {mathdoc},
volume = {_N_S_89},
number = {103},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a8/}
}
Toufik Zaïmi. On Roots of Polynomials with Positive Coefficients. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 89 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a8/