On Extended Generalized $\phi$-recurrent $\beta$-Kenmotsu Manifolds
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 77
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We extend the notion of generalized $\phi$-recurrent $\beta$-Kenmotsu manifold and study its various geometric properties with the existence of such notion.
Classification :
53C15 53C25
Keywords: generalized recurrent Kenmotsu manifold, generalized $\phi$-recurrent Kenmotsu manifold, extended generalized $\phi$-recurrent $\beta$-Kenmotsu manifold, Einstein manifold, scalar curvature
Keywords: generalized recurrent Kenmotsu manifold, generalized $\phi$-recurrent Kenmotsu manifold, extended generalized $\phi$-recurrent $\beta$-Kenmotsu manifold, Einstein manifold, scalar curvature
@article{PIM_2011_N_S_89_103_a7,
author = {Absos Ali Shaikh and Shyamal Kumar Hui},
title = {On {Extended} {Generalized} $\phi$-recurrent $\beta${-Kenmotsu} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {77 },
publisher = {mathdoc},
volume = {_N_S_89},
number = {103},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a7/}
}
TY - JOUR AU - Absos Ali Shaikh AU - Shyamal Kumar Hui TI - On Extended Generalized $\phi$-recurrent $\beta$-Kenmotsu Manifolds JO - Publications de l'Institut Mathématique PY - 2011 SP - 77 VL - _N_S_89 IS - 103 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a7/ LA - en ID - PIM_2011_N_S_89_103_a7 ER -
%0 Journal Article %A Absos Ali Shaikh %A Shyamal Kumar Hui %T On Extended Generalized $\phi$-recurrent $\beta$-Kenmotsu Manifolds %J Publications de l'Institut Mathématique %D 2011 %P 77 %V _N_S_89 %N 103 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a7/ %G en %F PIM_2011_N_S_89_103_a7
Absos Ali Shaikh; Shyamal Kumar Hui. On Extended Generalized $\phi$-recurrent $\beta$-Kenmotsu Manifolds. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 77 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a7/