The Scalar Curvature of the Tangent Bundle of a Finsler Manifold
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 57
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathbb{F}^m=(M,F)$ be a Finsler manifold and $G$ be the Sasaki-Finsler metric on the slit tangent bundle $TM^0=TM\setminus\{0\}$ of $M$. We express the scalar curvature $\widetilde\rho$ of the Riemannian manifold $(TM^0,G)$ in terms of some geometrical objects of the Finsler manifold $\mathbb{F}^m$. Then, we find necessary and sufficient conditions for $\widetilde\rho$ to be a positively homogenenous function of degree zero with respect to the fiber coordinates of $TM^0$. Finally, we obtain characterizations of Landsberg manifolds, Berwald manifolds and Riemannian manifolds whose $\widetilde\rho$ satisfies the above condition.
Classification :
53C60 53C15
Keywords: Berwald manifold, Finsler manifold, Landsberg manifold, Riemannian manifold, scalar curvature, tangent bundle
Keywords: Berwald manifold, Finsler manifold, Landsberg manifold, Riemannian manifold, scalar curvature, tangent bundle
@article{PIM_2011_N_S_89_103_a5,
author = {Aurel Bejancu and Hani Reda Farran},
title = {The {Scalar} {Curvature} of the {Tangent} {Bundle} of a {Finsler} {Manifold}},
journal = {Publications de l'Institut Math\'ematique},
pages = {57 },
year = {2011},
volume = {_N_S_89},
number = {103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/}
}
TY - JOUR AU - Aurel Bejancu AU - Hani Reda Farran TI - The Scalar Curvature of the Tangent Bundle of a Finsler Manifold JO - Publications de l'Institut Mathématique PY - 2011 SP - 57 VL - _N_S_89 IS - 103 UR - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/ LA - en ID - PIM_2011_N_S_89_103_a5 ER -
Aurel Bejancu; Hani Reda Farran. The Scalar Curvature of the Tangent Bundle of a Finsler Manifold. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 57 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/