The Scalar Curvature of the Tangent Bundle of a Finsler Manifold
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 57 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\mathbb{F}^m=(M,F)$ be a Finsler manifold and $G$ be the Sasaki-Finsler metric on the slit tangent bundle $TM^0=TM\setminus\{0\}$ of $M$. We express the scalar curvature $\widetilde\rho$ of the Riemannian manifold $(TM^0,G)$ in terms of some geometrical objects of the Finsler manifold $\mathbb{F}^m$. Then, we find necessary and sufficient conditions for $\widetilde\rho$ to be a positively homogenenous function of degree zero with respect to the fiber coordinates of $TM^0$. Finally, we obtain characterizations of Landsberg manifolds, Berwald manifolds and Riemannian manifolds whose $\widetilde\rho$ satisfies the above condition.
Classification : 53C60 53C15
Keywords: Berwald manifold, Finsler manifold, Landsberg manifold, Riemannian manifold, scalar curvature, tangent bundle
@article{PIM_2011_N_S_89_103_a5,
     author = {Aurel Bejancu and Hani Reda Farran},
     title = {The {Scalar} {Curvature} of the {Tangent} {Bundle} of a {Finsler} {Manifold}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {57 },
     publisher = {mathdoc},
     volume = {_N_S_89},
     number = {103},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/}
}
TY  - JOUR
AU  - Aurel Bejancu
AU  - Hani Reda Farran
TI  - The Scalar Curvature of the Tangent Bundle of a Finsler Manifold
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 57 
VL  - _N_S_89
IS  - 103
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/
LA  - en
ID  - PIM_2011_N_S_89_103_a5
ER  - 
%0 Journal Article
%A Aurel Bejancu
%A Hani Reda Farran
%T The Scalar Curvature of the Tangent Bundle of a Finsler Manifold
%J Publications de l'Institut Mathématique
%D 2011
%P 57 
%V _N_S_89
%N 103
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/
%G en
%F PIM_2011_N_S_89_103_a5
Aurel Bejancu; Hani Reda Farran. The Scalar Curvature of the Tangent Bundle of a Finsler Manifold. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 57 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a5/