Hereditarily Indecomposable Hausdorff Continua Have Unique Hyperspaces $2^X$ and $C_n(X)$
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 49
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $X$ be a Hausdorff continuum (a compact connected Hausdorff space). Let $2^X$ (respectively, $C_n(X)$) denote the hyperspace of nonempty closed subsets of $X$ (respectively, nonempty closed subsets of $X$ with at most $n$ components), with the Vietoris topology. We prove that if $X$ is hereditarily indecomposable, $Y$ is a Hausdorff continuum and $2^X$ (respectively $C_n(X)$) is homeomorphic to $2^Y$ (respectively, $C_n(Y) $), then $X$ is homeomorphic to $Y$.
Classification :
54B20
Keywords: generalized arc, Hausdorff continuum, hereditarily indecomposable, hyperspace, unique hyperspace, Vietoris topology
Keywords: generalized arc, Hausdorff continuum, hereditarily indecomposable, hyperspace, unique hyperspace, Vietoris topology
@article{PIM_2011_N_S_89_103_a4,
author = {Alejandro Illanes},
title = {Hereditarily {Indecomposable} {Hausdorff} {Continua} {Have} {Unique} {Hyperspaces} $2^X$ and $C_n(X)$},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
year = {2011},
volume = {_N_S_89},
number = {103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a4/}
}
TY - JOUR AU - Alejandro Illanes TI - Hereditarily Indecomposable Hausdorff Continua Have Unique Hyperspaces $2^X$ and $C_n(X)$ JO - Publications de l'Institut Mathématique PY - 2011 SP - 49 VL - _N_S_89 IS - 103 UR - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a4/ LA - en ID - PIM_2011_N_S_89_103_a4 ER -
Alejandro Illanes. Hereditarily Indecomposable Hausdorff Continua Have Unique Hyperspaces $2^X$ and $C_n(X)$. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 49 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a4/