A Loopless Implementation of a Gray Code for Signed Permutations
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 37 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Conway, Sloane and Wilks [2] proved the existence of a Gray code for the reflection group $B_n$. The elements of this group are the signed permutations of the set ${1,2,\dots,n}$. Here we give a loopless algorithm which generates a specific Gray code for $B_n$.
Classification : 68R05 05A05
Keywords: algorithms, combinatorial, loopless, gray code, reflection groups, signed permutations
@article{PIM_2011_N_S_89_103_a3,
     author = {James Korsh and Paul LaFollette and Seymour Lipschutz},
     title = {A {Loopless} {Implementation} of a {Gray} {Code} for {Signed} {Permutations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_89},
     number = {103},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/}
}
TY  - JOUR
AU  - James Korsh
AU  - Paul LaFollette
AU  - Seymour Lipschutz
TI  - A Loopless Implementation of a Gray Code for Signed Permutations
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 37 
VL  - _N_S_89
IS  - 103
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/
LA  - en
ID  - PIM_2011_N_S_89_103_a3
ER  - 
%0 Journal Article
%A James Korsh
%A Paul LaFollette
%A Seymour Lipschutz
%T A Loopless Implementation of a Gray Code for Signed Permutations
%J Publications de l'Institut Mathématique
%D 2011
%P 37 
%V _N_S_89
%N 103
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/
%G en
%F PIM_2011_N_S_89_103_a3
James Korsh; Paul LaFollette; Seymour Lipschutz. A Loopless Implementation of a Gray Code for Signed Permutations. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 37 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/