A Loopless Implementation of a Gray Code for Signed Permutations
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 37
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Conway, Sloane and Wilks [2] proved the existence of a Gray code for the reflection group $B_n$. The elements of this group are the signed permutations of the set ${1,2,\dots,n}$. Here we give a loopless algorithm which generates a specific Gray code for $B_n$.
Classification :
68R05 05A05
Keywords: algorithms, combinatorial, loopless, gray code, reflection groups, signed permutations
Keywords: algorithms, combinatorial, loopless, gray code, reflection groups, signed permutations
@article{PIM_2011_N_S_89_103_a3,
author = {James Korsh and Paul LaFollette and Seymour Lipschutz},
title = {A {Loopless} {Implementation} of a {Gray} {Code} for {Signed} {Permutations}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
year = {2011},
volume = {_N_S_89},
number = {103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/}
}
TY - JOUR AU - James Korsh AU - Paul LaFollette AU - Seymour Lipschutz TI - A Loopless Implementation of a Gray Code for Signed Permutations JO - Publications de l'Institut Mathématique PY - 2011 SP - 37 VL - _N_S_89 IS - 103 UR - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/ LA - en ID - PIM_2011_N_S_89_103_a3 ER -
%0 Journal Article %A James Korsh %A Paul LaFollette %A Seymour Lipschutz %T A Loopless Implementation of a Gray Code for Signed Permutations %J Publications de l'Institut Mathématique %D 2011 %P 37 %V _N_S_89 %N 103 %U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/ %G en %F PIM_2011_N_S_89_103_a3
James Korsh; Paul LaFollette; Seymour Lipschutz. A Loopless Implementation of a Gray Code for Signed Permutations. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 37 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/