A Loopless Implementation of a Gray Code for Signed Permutations
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 37

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Conway, Sloane and Wilks [2] proved the existence of a Gray code for the reflection group $B_n$. The elements of this group are the signed permutations of the set ${1,2,\dots,n}$. Here we give a loopless algorithm which generates a specific Gray code for $B_n$.
Classification : 68R05 05A05
Keywords: algorithms, combinatorial, loopless, gray code, reflection groups, signed permutations
@article{PIM_2011_N_S_89_103_a3,
     author = {James Korsh and Paul LaFollette and Seymour Lipschutz},
     title = {A {Loopless} {Implementation} of a {Gray} {Code} for {Signed} {Permutations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_89},
     number = {103},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/}
}
TY  - JOUR
AU  - James Korsh
AU  - Paul LaFollette
AU  - Seymour Lipschutz
TI  - A Loopless Implementation of a Gray Code for Signed Permutations
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 37 
VL  - _N_S_89
IS  - 103
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/
LA  - en
ID  - PIM_2011_N_S_89_103_a3
ER  - 
%0 Journal Article
%A James Korsh
%A Paul LaFollette
%A Seymour Lipschutz
%T A Loopless Implementation of a Gray Code for Signed Permutations
%J Publications de l'Institut Mathématique
%D 2011
%P 37 
%V _N_S_89
%N 103
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/
%G en
%F PIM_2011_N_S_89_103_a3
James Korsh; Paul LaFollette; Seymour Lipschutz. A Loopless Implementation of a Gray Code for Signed Permutations. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 37 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a3/