Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{PIM_2011_N_S_89_103_a2, author = {E. Omey and R. Vesilo}, title = {The {Difference} {Between} the {Product} and the {Convolution} {Product} of {Distribution} {Functions} in $\mathbb{R}^n$}, journal = {Publications de l'Institut Math\'ematique}, pages = {19 }, publisher = {mathdoc}, volume = {_N_S_89}, number = {103}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/} }
TY - JOUR AU - E. Omey AU - R. Vesilo TI - The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$ JO - Publications de l'Institut Mathématique PY - 2011 SP - 19 VL - _N_S_89 IS - 103 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/ LA - en ID - PIM_2011_N_S_89_103_a2 ER -
%0 Journal Article %A E. Omey %A R. Vesilo %T The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$ %J Publications de l'Institut Mathématique %D 2011 %P 19 %V _N_S_89 %N 103 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/ %G en %F PIM_2011_N_S_89_103_a2
E. Omey; R. Vesilo. The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 19 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/