The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 19 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Assume that $\vec X$ and $\vec Y$ are independent, nonnegative $d$-dimensional random vectors with distribution function (d.f.) $F(\vec x)$ and $G(\vec x)$, respectively. We are interested in estimates for the difference between the product and the convolution product of $F$ and $G$, i.e., \[ D(\vec x)=F(\vec x)G(\vec x)-F* G(\vec x). \] Related to $D(\vec x)$ is the difference $R(\vec x)$ between the tail of the convolution and the sum of the tails: \[ R(\vec x)=(1-F* G(\vec x))-(1-F(\vec x)+1-G(\vec x)). \] We obtain asymptotic inequalities and asymptotic equalities for $D(\vec x)$ and $R(\vec x)$. The results are multivariate analogues of univariate results obtained by several authors before.
Classification : 26A12 26B99 60E99 60K99
Keywords: subexponential distribution, regular variation, $O$-regularly varying functions, sums of random vectors
@article{PIM_2011_N_S_89_103_a2,
     author = {E. Omey and R. Vesilo},
     title = {The {Difference} {Between} the {Product} and the {Convolution} {Product} of {Distribution} {Functions} in $\mathbb{R}^n$},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {19 },
     publisher = {mathdoc},
     volume = {_N_S_89},
     number = {103},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/}
}
TY  - JOUR
AU  - E. Omey
AU  - R. Vesilo
TI  - The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 19 
VL  - _N_S_89
IS  - 103
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/
LA  - en
ID  - PIM_2011_N_S_89_103_a2
ER  - 
%0 Journal Article
%A E. Omey
%A R. Vesilo
%T The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$
%J Publications de l'Institut Mathématique
%D 2011
%P 19 
%V _N_S_89
%N 103
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/
%G en
%F PIM_2011_N_S_89_103_a2
E. Omey; R. Vesilo. The Difference Between the Product and the Convolution Product of Distribution Functions in $\mathbb{R}^n$. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 19 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a2/