On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We discuss the determination of the radius of the total graph of a commutative ring $R$ in the case when this graph is connected. Typical extensions such as polynomial rings, formal power series, idealization of the $R$-module $M$ and relations between the total graph of the ring $R$ and its extensions are also dealt with.
Classification :
13A99 05C25
Keywords: commutative ring, zero-divisor, total graph
Keywords: commutative ring, zero-divisor, total graph
@article{PIM_2011_N_S_89_103_a0,
author = {Zoran Pucanovi\'c and Zoran Petrovi\'c},
title = {On the {Radius} and the {Relation} {Between} the {Total} {Graph} of a {Commutative} {Ring} and {Its} {Extensions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
year = {2011},
volume = {_N_S_89},
number = {103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/}
}
TY - JOUR AU - Zoran Pucanović AU - Zoran Petrović TI - On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions JO - Publications de l'Institut Mathématique PY - 2011 SP - 1 VL - _N_S_89 IS - 103 UR - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/ LA - en ID - PIM_2011_N_S_89_103_a0 ER -
%0 Journal Article %A Zoran Pucanović %A Zoran Petrović %T On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions %J Publications de l'Institut Mathématique %D 2011 %P 1 %V _N_S_89 %N 103 %U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/ %G en %F PIM_2011_N_S_89_103_a0
Zoran Pucanović; Zoran Petrović. On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/