On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions
Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We discuss the determination of the radius of the total graph of a commutative ring $R$ in the case when this graph is connected. Typical extensions such as polynomial rings, formal power series, idealization of the $R$-module $M$ and relations between the total graph of the ring $R$ and its extensions are also dealt with.
Classification : 13A99 05C25
Keywords: commutative ring, zero-divisor, total graph
@article{PIM_2011_N_S_89_103_a0,
     author = {Zoran Pucanovi\'c and Zoran Petrovi\'c},
     title = {On the {Radius} and the {Relation}  {Between} the {Total} {Graph} of a {Commutative} {Ring} and {Its} {Extensions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_89},
     number = {103},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/}
}
TY  - JOUR
AU  - Zoran Pucanović
AU  - Zoran Petrović
TI  - On the Radius and the Relation  Between the Total Graph of a Commutative Ring and Its Extensions
JO  - Publications de l'Institut Mathématique
PY  - 2011
SP  - 1 
VL  - _N_S_89
IS  - 103
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/
LA  - en
ID  - PIM_2011_N_S_89_103_a0
ER  - 
%0 Journal Article
%A Zoran Pucanović
%A Zoran Petrović
%T On the Radius and the Relation  Between the Total Graph of a Commutative Ring and Its Extensions
%J Publications de l'Institut Mathématique
%D 2011
%P 1 
%V _N_S_89
%N 103
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/
%G en
%F PIM_2011_N_S_89_103_a0
Zoran Pucanović; Zoran Petrović. On the Radius and the Relation  Between the Total Graph of a Commutative Ring and Its Extensions. Publications de l'Institut Mathématique, _N_S_89 (2011) no. 103, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2011_N_S_89_103_a0/