Maximal Canonical Graphs with Seven Nonzero Eigenvalues
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 77 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In [3] and [4] A. Torgašev described all finite and infinite connected graphs having $3,4$ or $5$ nonzero eigenvalues (not necessarily distinct). In the same papers he has given a general method how to describe all connected graphs with any fixed number of nonzero eigenvalues. In [2] M. Lepović applying his method described all finite connected graphs which have exactly $6$ nonzero eigenvalues. We here describe all finite connected graphs with exactly $7$ nonzero eigenvalues.
Classification : 05C50
Keywords: Spectra of graphs, Maximal canonical graphs
@article{PIM_2010_N_S_88_102_a4,
     author = {Mirjana Lazi\'c},
     title = {Maximal {Canonical} {Graphs} with {Seven} {Nonzero} {Eigenvalues}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {77 },
     publisher = {mathdoc},
     volume = {_N_S_88},
     number = {102},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a4/}
}
TY  - JOUR
AU  - Mirjana Lazić
TI  - Maximal Canonical Graphs with Seven Nonzero Eigenvalues
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 77 
VL  - _N_S_88
IS  - 102
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a4/
LA  - en
ID  - PIM_2010_N_S_88_102_a4
ER  - 
%0 Journal Article
%A Mirjana Lazić
%T Maximal Canonical Graphs with Seven Nonzero Eigenvalues
%J Publications de l'Institut Mathématique
%D 2010
%P 77 
%V _N_S_88
%N 102
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a4/
%G en
%F PIM_2010_N_S_88_102_a4
Mirjana Lazić. Maximal Canonical Graphs with Seven Nonzero Eigenvalues. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 77 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a4/