Adequacy of Link Families
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We analyze adequacy of knots and links, utilizing Conway notation, Montesinos tangles and {t Linknot} and {t KhoHo} computer calculations. We introduce a numerical invariant called adequacy number, and compute adequacy polynomial which is the invariant of alternating link families. According to computational results, adequacy polynomial distinguishes (up to mutation) all families of alternating knots and links generated by links with at most 12 crossings.
Classification : 57M25 57M27
@article{PIM_2010_N_S_88_102_a1,
     author = {Slavik Jablan and Ljiljana Radovi\'c and Radmila Sazdanovi\'c},
     title = {Adequacy of {Link} {Families}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {21 },
     publisher = {mathdoc},
     volume = {_N_S_88},
     number = {102},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/}
}
TY  - JOUR
AU  - Slavik Jablan
AU  - Ljiljana Radović
AU  - Radmila Sazdanović
TI  - Adequacy of Link Families
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 21 
VL  - _N_S_88
IS  - 102
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/
LA  - en
ID  - PIM_2010_N_S_88_102_a1
ER  - 
%0 Journal Article
%A Slavik Jablan
%A Ljiljana Radović
%A Radmila Sazdanović
%T Adequacy of Link Families
%J Publications de l'Institut Mathématique
%D 2010
%P 21 
%V _N_S_88
%N 102
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/
%G en
%F PIM_2010_N_S_88_102_a1
Slavik Jablan; Ljiljana Radović; Radmila Sazdanović. Adequacy of Link Families. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 21 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/