Adequacy of Link Families
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 21
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We analyze adequacy of knots and links, utilizing Conway notation, Montesinos tangles and {t Linknot} and {t KhoHo} computer calculations. We introduce a numerical invariant called adequacy number, and compute adequacy polynomial which is the invariant of alternating link families. According to computational results, adequacy polynomial distinguishes (up to mutation) all families of alternating knots and links generated by links with at most 12 crossings.
Classification :
57M25 57M27
@article{PIM_2010_N_S_88_102_a1,
author = {Slavik Jablan and Ljiljana Radovi\'c and Radmila Sazdanovi\'c},
title = {Adequacy of {Link} {Families}},
journal = {Publications de l'Institut Math\'ematique},
pages = {21 },
publisher = {mathdoc},
volume = {_N_S_88},
number = {102},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/}
}
TY - JOUR AU - Slavik Jablan AU - Ljiljana Radović AU - Radmila Sazdanović TI - Adequacy of Link Families JO - Publications de l'Institut Mathématique PY - 2010 SP - 21 VL - _N_S_88 IS - 102 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/ LA - en ID - PIM_2010_N_S_88_102_a1 ER -
Slavik Jablan; Ljiljana Radović; Radmila Sazdanović. Adequacy of Link Families. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 21 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/