Adequacy of Link Families
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 21
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We analyze adequacy of knots and links, utilizing Conway notation, Montesinos tangles and {t Linknot} and {t KhoHo} computer calculations. We introduce a numerical invariant called adequacy number, and compute adequacy polynomial which is the invariant of alternating link families. According to computational results, adequacy polynomial distinguishes (up to mutation) all families of alternating knots and links generated by links with at most 12 crossings.
Classification :
57M25 57M27
@article{PIM_2010_N_S_88_102_a1,
author = {Slavik Jablan and Ljiljana Radovi\'c and Radmila Sazdanovi\'c},
title = {Adequacy of {Link} {Families}},
journal = {Publications de l'Institut Math\'ematique},
pages = {21 },
year = {2010},
volume = {_N_S_88},
number = {102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/}
}
Slavik Jablan; Ljiljana Radović; Radmila Sazdanović. Adequacy of Link Families. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 21 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a1/