Regularly Varying Solutions of Perturbed Euler Differential Equations and Related Functional Differential Equations
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An asymptotic analysis in the framework of Karamata regularly varying functions is performed for the solutions of second order linear differential and functional differential equations in the critical case i.e., when condition (1.5) as given below, holds.
Classification : 34C11 34K06 26A12
@article{PIM_2010_N_S_88_102_a0,
     author = {Kusano Takasi and Vojislav Mari\'c},
     title = {Regularly {Varying} {Solutions} of {Perturbed} {Euler} {Differential} {Equations} and {Related} {Functional} {Differential} {Equations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_88},
     number = {102},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a0/}
}
TY  - JOUR
AU  - Kusano Takasi
AU  - Vojislav Marić
TI  - Regularly Varying Solutions of Perturbed Euler Differential Equations and Related Functional Differential Equations
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 1 
VL  - _N_S_88
IS  - 102
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a0/
LA  - en
ID  - PIM_2010_N_S_88_102_a0
ER  - 
%0 Journal Article
%A Kusano Takasi
%A Vojislav Marić
%T Regularly Varying Solutions of Perturbed Euler Differential Equations and Related Functional Differential Equations
%J Publications de l'Institut Mathématique
%D 2010
%P 1 
%V _N_S_88
%N 102
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a0/
%G en
%F PIM_2010_N_S_88_102_a0
Kusano Takasi; Vojislav Marić. Regularly Varying Solutions of Perturbed Euler Differential Equations and Related Functional Differential Equations. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a0/