On the Coprimality of Some Arithmetic Functions
Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 121
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\varphi$ stand for the Euler function.
Given a positive integer $n$, let $\sigma(n)$ stand for the sum of the positive divisors of $n$
and let $\tau(n)$ be the number of divisors of $n$.
We obtain an asymptotic estimate for the counting function of the set
$\{n:\gcd(\varphi(n),\tau(n))=\gcd(\sigma(n),\tau(n))=1\}$.
Moreover, setting $l(n):=\gcd(\tau(n),\tau(n+1))$,
we provide an asymptotic estimate for the size of $\#\{n\leq x:l(n)=1\}$.
Classification :
11A05 11A25 11N37
Keywords: Arithmetic functions, number of divisors, sum of divisors
Keywords: Arithmetic functions, number of divisors, sum of divisors
@article{PIM_2010_N_S_87_101_a8,
author = {Jean-Marie De Koninck and Imre K\'atai},
title = {On the {Coprimality} of {Some} {Arithmetic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {121 },
publisher = {mathdoc},
volume = {_N_S_87},
number = {101},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a8/}
}
TY - JOUR AU - Jean-Marie De Koninck AU - Imre Kátai TI - On the Coprimality of Some Arithmetic Functions JO - Publications de l'Institut Mathématique PY - 2010 SP - 121 VL - _N_S_87 IS - 101 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a8/ LA - en ID - PIM_2010_N_S_87_101_a8 ER -
Jean-Marie De Koninck; Imre Kátai. On the Coprimality of Some Arithmetic Functions. Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 121 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a8/