A Propositional p-adic Probability Logic
Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 75 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present the $p$-adic probability logic $LpPP$ based on the paper \cite{5} of A. Khrennikov et al. The logical language contains formulas such as $P_{=s}(\alpha)$ with the intended meaning ``the probability of $\alpha$ is equal to $s$", where $\alpha$ is a propositional formula. We introduce a class of Kripke-like models that combine properties of the usual Kripke models and finitely additive $p$-adic probabilities. We propose an infinitary axiom system and prove that it is sound and strongly complete with respect to the considered class of models. In the paper the terms finitary and infinitary concern the meta language only, i.e., the logical language is countable, formulas are finite, while only proofs are allowed to be infinite. We analyze decidability of $LpPP$ and provide a procedure which decides satisfiability of a given probability formula.
Classification : 03B48 03B42 03B45
@article{PIM_2010_N_S_87_101_a4,
     author = {Milo\v{s} Milo\v{s}evi\'c},
     title = {A {Propositional} p-adic {Probability} {Logic}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {75 },
     publisher = {mathdoc},
     volume = {_N_S_87},
     number = {101},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a4/}
}
TY  - JOUR
AU  - Miloš Milošević
TI  - A Propositional p-adic Probability Logic
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 75 
VL  - _N_S_87
IS  - 101
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a4/
LA  - en
ID  - PIM_2010_N_S_87_101_a4
ER  - 
%0 Journal Article
%A Miloš Milošević
%T A Propositional p-adic Probability Logic
%J Publications de l'Institut Mathématique
%D 2010
%P 75 
%V _N_S_87
%N 101
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a4/
%G en
%F PIM_2010_N_S_87_101_a4
Miloš Milošević. A Propositional p-adic Probability Logic. Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 75 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a4/