Maximum Cuts in Extended Natural Deduction
Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 59 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider a standard system of sequents and a system of extended natural deduction (which is a modification of natural deduction) for intuitionistic predicate logic and connect the special cuts, maximum cuts, from sequent derivations and maximum segments from derivations of extended natural deduction. We show that the image of a sequent derivation without maximum cuts is a derivation without maximum segments (i.e., a normal derivation) in extended natural deduction.
Classification : 03F05 03F07
Keywords: systems of sequents, natural deduction, cut elimination, normalization
@article{PIM_2010_N_S_87_101_a3,
     author = {Mirjana Borisavljevi\'c},
     title = {Maximum {Cuts} in {Extended} {Natural} {Deduction}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {59 },
     publisher = {mathdoc},
     volume = {_N_S_87},
     number = {101},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a3/}
}
TY  - JOUR
AU  - Mirjana Borisavljević
TI  - Maximum Cuts in Extended Natural Deduction
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 59 
VL  - _N_S_87
IS  - 101
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a3/
LA  - en
ID  - PIM_2010_N_S_87_101_a3
ER  - 
%0 Journal Article
%A Mirjana Borisavljević
%T Maximum Cuts in Extended Natural Deduction
%J Publications de l'Institut Mathématique
%D 2010
%P 59 
%V _N_S_87
%N 101
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a3/
%G en
%F PIM_2010_N_S_87_101_a3
Mirjana Borisavljević. Maximum Cuts in Extended Natural Deduction. Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 59 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a3/