The Method of Stationary Phase for Once Integrated Group
Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 73
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We obtain a formula of decomposition for
$
\Phi(A)=A\intłimits_{R^n}{S(f(x))\varphi(x) dx+\intłimits_{R^n}{\varphi(x) dx}}
$
using the method of stationary phase.
Here $(S(t))_{t\in R}$ is once integrated,
exponentially bounded group of operators in a Banach space $X$,
with generator $A$, which satisfies the condition: For every $x\in X$ there exists $\delta=\delta(x)>0$ such
that $\frac{S(t)x}{t^{1/2+\delta}}\to 0$ as $t\to 0$. The function $\varphi (x)$ is infinitely differentiable, defined
on $R^n$, with values in $X$, with a compact support supp $\varphi$,
the function $f(x)$ is infinitely differentiable, defined on
$R^n$, with values in $R$, and $f(x)$ on $\operatorname{supp}\varphi$ has
exactly one nondegenerate stationary point $x_0$.
Classification :
47D03 47D62
Keywords: Strongly continuous group, once integrated semigroup (group), method of stationary phase
Keywords: Strongly continuous group, once integrated semigroup (group), method of stationary phase
@article{PIM_2006_N_S_79_93_a7,
author = {Ramiz Vugdali\'c and Fikret Vajzovi\'c},
title = {The {Method} of {Stationary} {Phase} for {Once} {Integrated} {Group}},
journal = {Publications de l'Institut Math\'ematique},
pages = {73 },
year = {2006},
volume = {_N_S_79},
number = {93},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2006_N_S_79_93_a7/}
}
Ramiz Vugdalić; Fikret Vajzović. The Method of Stationary Phase for Once Integrated Group. Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 73 . http://geodesic.mathdoc.fr/item/PIM_2006_N_S_79_93_a7/