Cospectral Graphs With Least Eigenvalue at Least -2
Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study the phenomenon of cospectrality in generalized line graphs and in exceptional graphs. We survey old results from today's point of view and obtain some new results partly by the use of computer. Among other things, we show that a connected generalized line graph $L(H)$ has an exceptional cospectral mate only if its root graph $H$, assuming it is itself connected, has at most 9 vertices. The paper contains a description of a table of sets of cospectral graphs with least eigenvalue at least $-2$ and at most 8 vertices together with some comments and theoretical explanations of the phenomena suggested by the table.
Classification : 05C50
@article{PIM_2005_N_S_78_92_a2,
     author = {Drago\v{s} Cvetkovi\'c and Mirko Lepovi\'c},
     title = {Cospectral {Graphs} {With} {Least} {Eigenvalue} at {Least} -2},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {51 },
     publisher = {mathdoc},
     volume = {_N_S_78},
     number = {92},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2005_N_S_78_92_a2/}
}
TY  - JOUR
AU  - Dragoš Cvetković
AU  - Mirko Lepović
TI  - Cospectral Graphs With Least Eigenvalue at Least -2
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 51 
VL  - _N_S_78
IS  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2005_N_S_78_92_a2/
LA  - en
ID  - PIM_2005_N_S_78_92_a2
ER  - 
%0 Journal Article
%A Dragoš Cvetković
%A Mirko Lepović
%T Cospectral Graphs With Least Eigenvalue at Least -2
%J Publications de l'Institut Mathématique
%D 2005
%P 51 
%V _N_S_78
%N 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2005_N_S_78_92_a2/
%G en
%F PIM_2005_N_S_78_92_a2
Dragoš Cvetković; Mirko Lepović. Cospectral Graphs With Least Eigenvalue at Least -2. Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 51 . http://geodesic.mathdoc.fr/item/PIM_2005_N_S_78_92_a2/