Two Exercises Concerning the Degree of the Product of Algebraic Numbers
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 67 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $k$ be a field, and let $\alpha$ and $\beta$ be two algebraic numbers over $k$ of degree $d$ and $\ell$, respectively. We find necessary and sufficient conditions under which $\deg(\alpha\beta)=d\ell$ and $\deg(\alpha+\beta)=d\ell$. Since these conditions are quite difficult to check, we also state a simple sufficient condition for such equalities to occur.
Classification : 11R04 11R32 12E99
Keywords: field, algebraic number, degree, root of unity
@article{PIM_2005_N_S_77_91_a6,
     author = {Arturas Dubickas},
     title = {Two {Exercises} {Concerning} the {Degree} of the {Product} of {Algebraic} {Numbers}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {67 },
     publisher = {mathdoc},
     volume = {_N_S_77},
     number = {91},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/}
}
TY  - JOUR
AU  - Arturas Dubickas
TI  - Two Exercises Concerning the Degree of the Product of Algebraic Numbers
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 67 
VL  - _N_S_77
IS  - 91
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/
LA  - en
ID  - PIM_2005_N_S_77_91_a6
ER  - 
%0 Journal Article
%A Arturas Dubickas
%T Two Exercises Concerning the Degree of the Product of Algebraic Numbers
%J Publications de l'Institut Mathématique
%D 2005
%P 67 
%V _N_S_77
%N 91
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/
%G en
%F PIM_2005_N_S_77_91_a6
Arturas Dubickas. Two Exercises Concerning the Degree of the Product of Algebraic Numbers. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 67 . http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/