Two Exercises Concerning the Degree of the Product of Algebraic Numbers
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 67
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $k$ be a field, and let $\alpha$ and $\beta$ be two algebraic
numbers over $k$ of degree $d$ and $\ell$, respectively. We find
necessary and sufficient conditions under which
$\deg(\alpha\beta)=d\ell$ and $\deg(\alpha+\beta)=d\ell$. Since these
conditions are quite difficult to check, we also state a simple
sufficient condition for such equalities to occur.
Classification :
11R04 11R32 12E99
Keywords: field, algebraic number, degree, root of unity
Keywords: field, algebraic number, degree, root of unity
@article{PIM_2005_N_S_77_91_a6,
author = {Arturas Dubickas},
title = {Two {Exercises} {Concerning} the {Degree} of the {Product} of {Algebraic} {Numbers}},
journal = {Publications de l'Institut Math\'ematique},
pages = {67 },
publisher = {mathdoc},
volume = {_N_S_77},
number = {91},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/}
}
TY - JOUR AU - Arturas Dubickas TI - Two Exercises Concerning the Degree of the Product of Algebraic Numbers JO - Publications de l'Institut Mathématique PY - 2005 SP - 67 VL - _N_S_77 IS - 91 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/ LA - en ID - PIM_2005_N_S_77_91_a6 ER -
Arturas Dubickas. Two Exercises Concerning the Degree of the Product of Algebraic Numbers. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 67 . http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a6/