Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{PIM_2005_N_S_77_91_a5, author = {Boris Rosenfeld}, title = {A 2-dimensional {Algebraic} {Variety} {With} 27 {Rectilinear} {Generators} and 108 {Trisecants} and its {Connection} {With} the {Maximal} {Exceptional} {Simple} lie {Group}}, journal = {Publications de l'Institut Math\'ematique}, pages = {61 }, publisher = {mathdoc}, volume = {_N_S_77}, number = {91}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/} }
TY - JOUR AU - Boris Rosenfeld TI - A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group JO - Publications de l'Institut Mathématique PY - 2005 SP - 61 VL - _N_S_77 IS - 91 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/ LA - en ID - PIM_2005_N_S_77_91_a5 ER -
%0 Journal Article %A Boris Rosenfeld %T A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group %J Publications de l'Institut Mathématique %D 2005 %P 61 %V _N_S_77 %N 91 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/ %G en %F PIM_2005_N_S_77_91_a5
Boris Rosenfeld. A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 61 . http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/