A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 61 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A 2-dimensional algebraic variety in 4-dimensional projective space determining a regular configuration is considered and its connection with simple exceptional Lie group $E_8$ is found.
Classification : 14P05 22E99
@article{PIM_2005_N_S_77_91_a5,
     author = {Boris Rosenfeld},
     title = {A 2-dimensional {Algebraic} {Variety} {With} 27 {Rectilinear} {Generators} and 108 {Trisecants} and its {Connection} {With} the {Maximal} {Exceptional} {Simple} lie {Group}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {61 },
     publisher = {mathdoc},
     volume = {_N_S_77},
     number = {91},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/}
}
TY  - JOUR
AU  - Boris Rosenfeld
TI  - A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 61 
VL  - _N_S_77
IS  - 91
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/
LA  - en
ID  - PIM_2005_N_S_77_91_a5
ER  - 
%0 Journal Article
%A Boris Rosenfeld
%T A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group
%J Publications de l'Institut Mathématique
%D 2005
%P 61 
%V _N_S_77
%N 91
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/
%G en
%F PIM_2005_N_S_77_91_a5
Boris Rosenfeld. A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 61 . http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a5/