Symmetries of Conservation Laws
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We apply techniques of symmetry group analysis in solving two systems of conservation laws: a model of two strictly hyperbolic conservation laws and a zero pressure gas dynamics model, which both have no global solution, but whose solution consists of singular shock waves. We show that these shock waves are solutions in the sense of $1$-strong association. Also, we compute all projectable symmetry groups and show that they are $1$-strongly associated, hence transform existing solutions in the sense of $1$-strong association into other solutions.
Classification : 35L65 35D99 46F30 58D19
Keywords: symmetry group, infinitesimal generator, conservation law, Riemann problem, singular shock wave, solution in the sense of association
@article{PIM_2005_N_S_77_91_a3,
     author = {Sanja Konjik},
     title = {Symmetries of {Conservation} {Laws}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {29 },
     publisher = {mathdoc},
     volume = {_N_S_77},
     number = {91},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a3/}
}
TY  - JOUR
AU  - Sanja Konjik
TI  - Symmetries of Conservation Laws
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 29 
VL  - _N_S_77
IS  - 91
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a3/
LA  - en
ID  - PIM_2005_N_S_77_91_a3
ER  - 
%0 Journal Article
%A Sanja Konjik
%T Symmetries of Conservation Laws
%J Publications de l'Institut Mathématique
%D 2005
%P 29 
%V _N_S_77
%N 91
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a3/
%G en
%F PIM_2005_N_S_77_91_a3
Sanja Konjik. Symmetries of Conservation Laws. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 29 . http://geodesic.mathdoc.fr/item/PIM_2005_N_S_77_91_a3/