Quasiconformal Harmonic Functions Between Convex Domains
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 3 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We generalize Martio's paper [14]. Indeed the problem studied in this paper is under which conditions on a homeomorphism $f$ between the unit circle $S^1:=\{z:|z|=1\}$ and a fix convex Jordan curve $\gamma$ the harmonic extension of $f$ is a quasiconformal mapping. In addition, we give some results for some classes of harmonic diffeomorphisms. Further, we give some results concerning harmonic quasiconformal mappings (which follow by the results obtained in [10]). Finally, we give some examples which explain that the classes defined in [14] are not big enough to enclose all harmonic quasiconformal mappings of the disc onto itself.
Classification : 30C55 31A05
Keywords: complex functions, planar harmonic mappings
@article{PIM_2004_N_S_76_90_a0,
     author = {David Kalaj},
     title = {Quasiconformal {Harmonic} {Functions} {Between} {Convex} {Domains}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {3 },
     publisher = {mathdoc},
     volume = {_N_S_76},
     number = {90},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2004_N_S_76_90_a0/}
}
TY  - JOUR
AU  - David Kalaj
TI  - Quasiconformal Harmonic Functions Between Convex Domains
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 3 
VL  - _N_S_76
IS  - 90
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2004_N_S_76_90_a0/
LA  - en
ID  - PIM_2004_N_S_76_90_a0
ER  - 
%0 Journal Article
%A David Kalaj
%T Quasiconformal Harmonic Functions Between Convex Domains
%J Publications de l'Institut Mathématique
%D 2004
%P 3 
%V _N_S_76
%N 90
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2004_N_S_76_90_a0/
%G en
%F PIM_2004_N_S_76_90_a0
David Kalaj. Quasiconformal Harmonic Functions Between Convex Domains. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 3 . http://geodesic.mathdoc.fr/item/PIM_2004_N_S_76_90_a0/