Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions
Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 217 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Analytic mappings between Riemann surfaces are very natural objects in complex analysis. Corresponding to the classical univalent functions we have the class of injective holomorphic mappings --- i.e., conformal embeddings --- of a Riemann surface into another. We find indeed a number of analogies between them. On the other hand, because of the non-planarity of the domain surface, we face some new problems which we have never encountered in the classical theory. We discuss various problems concerning the conformal embeddings.
Classification : 30F99 30C35 30C55 30F25 30F45 14H55 76M40
Keywords: inivalent function
@article{PIM_2004_N_S_75_89_a16,
     author = {M. Shiba},
     title = {Conformal {Mapping} of {Riemann} {Surfaces} and the {Classical} {Theory} of {Univalent} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {217 },
     publisher = {mathdoc},
     volume = {_N_S_75},
     number = {89},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/}
}
TY  - JOUR
AU  - M. Shiba
TI  - Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 217 
VL  - _N_S_75
IS  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/
LA  - en
ID  - PIM_2004_N_S_75_89_a16
ER  - 
%0 Journal Article
%A M. Shiba
%T Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions
%J Publications de l'Institut Mathématique
%D 2004
%P 217 
%V _N_S_75
%N 89
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/
%G en
%F PIM_2004_N_S_75_89_a16
M. Shiba. Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions. Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 217 . http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/