Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions
Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 217
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Analytic mappings between Riemann surfaces are very natural
objects in complex analysis. Corresponding to the classical univalent
functions we have the class of injective holomorphic mappings --- i.e.,
conformal embeddings --- of a Riemann surface into another. We find
indeed a number of analogies between them. On the other hand, because
of the non-planarity of the domain surface, we face some new problems
which we have never encountered in the classical theory. We discuss
various problems concerning the conformal embeddings.
Classification :
30F99 30C35 30C55 30F25 30F45 14H55 76M40
Keywords: inivalent function
Keywords: inivalent function
@article{PIM_2004_N_S_75_89_a16,
author = {M. Shiba},
title = {Conformal {Mapping} of {Riemann} {Surfaces} and the {Classical} {Theory} of {Univalent} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {217 },
year = {2004},
volume = {_N_S_75},
number = {89},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/}
}
TY - JOUR AU - M. Shiba TI - Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions JO - Publications de l'Institut Mathématique PY - 2004 SP - 217 VL - _N_S_75 IS - 89 UR - http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/ LA - en ID - PIM_2004_N_S_75_89_a16 ER -
M. Shiba. Conformal Mapping of Riemann Surfaces and the Classical Theory of Univalent Functions. Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 217 . http://geodesic.mathdoc.fr/item/PIM_2004_N_S_75_89_a16/