On the Convergence of Finite-difference Scheme for one Nonlocal Elliptic Boundary Value Problem
Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 69 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The finite-difference scheme approximating nonlocal boundary value problem for a second order elliptic equation is studied. A convergence rate estimate in discrete $W_2^1$-norm is obtained, assuming that the coefficients and the solution to the original problem belongs to Sobolev spaces.
Classification : 65N06
Keywords: difference schemes, nonlocal boundary value problem, elliptic equation, weighted spaces, convergence rate
@article{PIM_2001_N_S_70_84_a8,
     author = {Givi Berikelashvili},
     title = {On the {Convergence} of {Finite-difference} {Scheme} for one {Nonlocal} {Elliptic} {Boundary} {Value} {Problem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {69 },
     publisher = {mathdoc},
     volume = {_N_S_70},
     number = {84},
     year = {2001},
     zbl = {1032.65118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a8/}
}
TY  - JOUR
AU  - Givi Berikelashvili
TI  - On the Convergence of Finite-difference Scheme for one Nonlocal Elliptic Boundary Value Problem
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 69 
VL  - _N_S_70
IS  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a8/
LA  - en
ID  - PIM_2001_N_S_70_84_a8
ER  - 
%0 Journal Article
%A Givi Berikelashvili
%T On the Convergence of Finite-difference Scheme for one Nonlocal Elliptic Boundary Value Problem
%J Publications de l'Institut Mathématique
%D 2001
%P 69 
%V _N_S_70
%N 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a8/
%G en
%F PIM_2001_N_S_70_84_a8
Givi Berikelashvili. On the Convergence of Finite-difference Scheme for one Nonlocal Elliptic Boundary Value Problem. Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 69 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a8/