Estimating of Parameters: Nuar(1) Process
Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 63
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We applied the method of conditional least squares for estimating
parameters of NUAR(1). This process can be represented as the random
coefficient autoregressive time series of the form
$
X_n=U_n X_{n-1}+V_n,
$
where $\{(U_n,V_n)\}$ is the sequence of independent identically
distributed random vectors such that supply the elements of the sequence
$\{X_n\}$ with $\mathcal{U}(0,1)$ marginal distribution. Defined
estimates were the functions of the estimates of moments $E(U_n)$
and $E(U_n V_n)$ and they are strong consistent and asymptotically
normally distributed.
Classification :
62M10
Keywords: conditional least squares estimation, uniform autoregressive process, asymptotic normality, strong consistency
Keywords: conditional least squares estimation, uniform autoregressive process, asymptotic normality, strong consistency
@article{PIM_2001_N_S_70_84_a7,
author = {Miroslav M. Risti\'c and Biljana \v{C}. Popovi\'c},
title = {Estimating of {Parameters:} {Nuar(1)} {Process}},
journal = {Publications de l'Institut Math\'ematique},
pages = {63 },
publisher = {mathdoc},
volume = {_N_S_70},
number = {84},
year = {2001},
zbl = {1034.62087},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a7/}
}
TY - JOUR AU - Miroslav M. Ristić AU - Biljana Č. Popović TI - Estimating of Parameters: Nuar(1) Process JO - Publications de l'Institut Mathématique PY - 2001 SP - 63 VL - _N_S_70 IS - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a7/ LA - en ID - PIM_2001_N_S_70_84_a7 ER -
Miroslav M. Ristić; Biljana Č. Popović. Estimating of Parameters: Nuar(1) Process. Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 63 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a7/