Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator}
Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 37
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A slant Toeplitz operator $A_\varphi$ with symbol $\varphi$ in
$L^\infty(T)$, where $T$ is the unit circle on the complex plane, is an
operator whose representing matrix $M=(a_{i j})$ is given by
$a_{ij}=\\varphi, z^{2i-j}\>$, where $\\cdot,\cdot\>$ is the usual inner
product in $L^2(T)$. The operator $B_\varphi$ denotes the compression of
$A_\varphi$ to $H^2(T)$(Hardy space). In this paper, we prove that the
spectral radius of $B_\varphi$ is greater than the spectral radius of
$A_\varphi$, and if $\varphi$ and $\varphi^{-1}$ are in $H^\infty$, then the
spectrum of $B_\varphi$ contains a closed disc and the interior of this
disc consists of eigenvalues with infinite multiplicity.
Classification :
47B35 47A10
Keywords: Toeplitz operator, slant Toeplitz operator, compression, spectrum
Keywords: Toeplitz operator, slant Toeplitz operator, compression, spectrum
@article{PIM_2001_N_S_70_84_a4,
author = {Taddesse Zegeye and S.C. Arora},
title = {Spectral {Radius} and {Spectrum} of the {Compression} of a {Slant} {Toeplitz} {Operator}}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
year = {2001},
volume = {_N_S_70},
number = {84},
zbl = {1029.47015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/}
}
TY - JOUR AU - Taddesse Zegeye AU - S.C. Arora TI - Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator} JO - Publications de l'Institut Mathématique PY - 2001 SP - 37 VL - _N_S_70 IS - 84 UR - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/ LA - en ID - PIM_2001_N_S_70_84_a4 ER -
Taddesse Zegeye; S.C. Arora. Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator}. Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 37 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/