Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator}
Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 37 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A slant Toeplitz operator $A_\varphi$ with symbol $\varphi$ in $L^\infty(T)$, where $T$ is the unit circle on the complex plane, is an operator whose representing matrix $M=(a_{i j})$ is given by $a_{ij}=\\varphi, z^{2i-j}\>$, where $\\cdot,\cdot\>$ is the usual inner product in $L^2(T)$. The operator $B_\varphi$ denotes the compression of $A_\varphi$ to $H^2(T)$(Hardy space). In this paper, we prove that the spectral radius of $B_\varphi$ is greater than the spectral radius of $A_\varphi$, and if $\varphi$ and $\varphi^{-1}$ are in $H^\infty$, then the spectrum of $B_\varphi$ contains a closed disc and the interior of this disc consists of eigenvalues with infinite multiplicity.
Classification : 47B35 47A10
Keywords: Toeplitz operator, slant Toeplitz operator, compression, spectrum
@article{PIM_2001_N_S_70_84_a4,
     author = {Taddesse Zegeye and S.C. Arora},
     title = {Spectral {Radius} and {Spectrum} of the {Compression} of a {Slant} {Toeplitz} {Operator}}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_70},
     number = {84},
     year = {2001},
     zbl = {1029.47015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/}
}
TY  - JOUR
AU  - Taddesse Zegeye
AU  - S.C. Arora
TI  - Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator}
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 37 
VL  - _N_S_70
IS  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/
LA  - en
ID  - PIM_2001_N_S_70_84_a4
ER  - 
%0 Journal Article
%A Taddesse Zegeye
%A S.C. Arora
%T Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator}
%J Publications de l'Institut Mathématique
%D 2001
%P 37 
%V _N_S_70
%N 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/
%G en
%F PIM_2001_N_S_70_84_a4
Taddesse Zegeye; S.C. Arora. Spectral Radius and Spectrum of the Compression of a Slant Toeplitz Operator}. Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 37 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a4/