Orthogonal Polynomials and Regularly Varying Sequences
Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 26 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce a method of estimating asymptotic behaviour of polynomials $Q_n^{(\alpha)}(x):=\sum_{k\le n}c_k a_{nk} x^k$, $n\to\infty$, related to a given polynomial $Q_n(x):=\sum_{k\le n} a_{nk}x^k$, where $(c_k)$, $k\in N$ is any regularly varying sequence of index $\alpha$ in the sense of Karamata. Then we apply our results to classical orthogonal polynomials as relevant examples.
Classification : 42C05 26A12
@article{PIM_2001_N_S_70_84_a3,
     author = {Slavko Simi\'c},
     title = {Orthogonal {Polynomials} and {Regularly} {Varying} {Sequences}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {26 },
     publisher = {mathdoc},
     volume = {_N_S_70},
     number = {84},
     year = {2001},
     zbl = {1034.42025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a3/}
}
TY  - JOUR
AU  - Slavko Simić
TI  - Orthogonal Polynomials and Regularly Varying Sequences
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 26 
VL  - _N_S_70
IS  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a3/
LA  - en
ID  - PIM_2001_N_S_70_84_a3
ER  - 
%0 Journal Article
%A Slavko Simić
%T Orthogonal Polynomials and Regularly Varying Sequences
%J Publications de l'Institut Mathématique
%D 2001
%P 26 
%V _N_S_70
%N 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a3/
%G en
%F PIM_2001_N_S_70_84_a3
Slavko Simić. Orthogonal Polynomials and Regularly Varying Sequences. Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 26 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a3/