Orthogonal Polynomials and Regularly Varying Sequences
Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 26
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We introduce a method of estimating asymptotic behaviour of
polynomials $Q_n^{(\alpha)}(x):=\sum_{k\le n}c_k a_{nk} x^k$,
$n\to\infty$, related to a given polynomial
$Q_n(x):=\sum_{k\le n} a_{nk}x^k$, where $(c_k)$, $k\in N$ is any
regularly varying sequence of index $\alpha$ in the sense of Karamata.
Then we apply our results to classical orthogonal polynomials as
relevant examples.
@article{PIM_2001_N_S_70_84_a3,
author = {Slavko Simi\'c},
title = {Orthogonal {Polynomials} and {Regularly} {Varying} {Sequences}},
journal = {Publications de l'Institut Math\'ematique},
pages = {26 },
publisher = {mathdoc},
volume = {_N_S_70},
number = {84},
year = {2001},
zbl = {1034.42025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a3/}
}
Slavko Simić. Orthogonal Polynomials and Regularly Varying Sequences. Publications de l'Institut Mathématique, _N_S_70 (2001) no. 84, p. 26 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_70_84_a3/