On Commuting Generalized Inverses of Matrices and in Associative Rings
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We obtain explicit solutions of certain systems of matrix equations which define commuting generalized inverses. It is proved that the only possible generalized inverse defined by (4) is the Drazin inverse. On the other hand, the system (18) defines the generalized inverses, which may differ from the Drazin inverse. Examples are given in order to show how the obtained results can be extended to associative rings.
Classification : 15A09
@article{PIM_2001_N_S_69_83_a7,
     author = {Jovan D. Ke\v{c}ki\'c},
     title = {On {Commuting} {Generalized} {Inverses} of {Matrices} and in {Associative} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {51 },
     publisher = {mathdoc},
     volume = {_N_S_69},
     number = {83},
     year = {2001},
     zbl = {1004.15011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a7/}
}
TY  - JOUR
AU  - Jovan D. Kečkić
TI  - On Commuting Generalized Inverses of Matrices and in Associative Rings
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 51 
VL  - _N_S_69
IS  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a7/
LA  - en
ID  - PIM_2001_N_S_69_83_a7
ER  - 
%0 Journal Article
%A Jovan D. Kečkić
%T On Commuting Generalized Inverses of Matrices and in Associative Rings
%J Publications de l'Institut Mathématique
%D 2001
%P 51 
%V _N_S_69
%N 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a7/
%G en
%F PIM_2001_N_S_69_83_a7
Jovan D. Kečkić. On Commuting Generalized Inverses of Matrices and in Associative Rings. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 51 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a7/