On Commuting Generalized Inverses of Matrices and in Associative Rings
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 51
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We obtain explicit solutions of certain systems of matrix
equations which define commuting generalized inverses. It is proved
that the only possible generalized inverse defined by (4) is the Drazin
inverse. On the other hand, the system (18) defines the generalized
inverses, which may differ from the Drazin inverse. Examples are given
in order to show how the obtained results can be extended to
associative rings.
@article{PIM_2001_N_S_69_83_a7,
author = {Jovan D. Ke\v{c}ki\'c},
title = {On {Commuting} {Generalized} {Inverses} of {Matrices} and in {Associative} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {51 },
year = {2001},
volume = {_N_S_69},
number = {83},
zbl = {1004.15011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a7/}
}
Jovan D. Kečkić. On Commuting Generalized Inverses of Matrices and in Associative Rings. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 51 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a7/