On Degree Sequences of Graphs with Given Cyclomatic Number
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 34 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Starting with the Criterion by Gutman and Ruch for graphical partitions, Gutman analyzed degree sequences of connected graphs with cyclomatic number $c$, for $c\le 5$. In this paper, his results are revisited and, based on the Erdös-Gallai Criterion, extended to arbitrary values of $c$. Necessary and sufficient conditions are obtained for any partition to be the degree sequence of a connected graph with cyclomatic number $c$.
Classification : 05C75
@article{PIM_2001_N_S_69_83_a5,
     author = {Manfred Schocker},
     title = {On {Degree} {Sequences} of {Graphs} with {Given} {Cyclomatic} {Number}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {34 },
     publisher = {mathdoc},
     volume = {_N_S_69},
     number = {83},
     year = {2001},
     zbl = {0997.05028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a5/}
}
TY  - JOUR
AU  - Manfred Schocker
TI  - On Degree Sequences of Graphs with Given Cyclomatic Number
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 34 
VL  - _N_S_69
IS  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a5/
LA  - en
ID  - PIM_2001_N_S_69_83_a5
ER  - 
%0 Journal Article
%A Manfred Schocker
%T On Degree Sequences of Graphs with Given Cyclomatic Number
%J Publications de l'Institut Mathématique
%D 2001
%P 34 
%V _N_S_69
%N 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a5/
%G en
%F PIM_2001_N_S_69_83_a5
Manfred Schocker. On Degree Sequences of Graphs with Given Cyclomatic Number. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 34 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a5/