Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 27 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Rašković [3] introduced a conservative extension of classical propositional logic with some probability operators and proved corresponding completeness and decidability theorem. We prove the Robinson's consistency and Craig interpolation for this logic.
Classification : 03C70
@article{PIM_2001_N_S_69_83_a4,
     author = {Neboj\v{s}a Ikodinovi\'c},
     title = {Craig {Interpolation} {Theorem} for {Classical} {Propositional} {Logic} with some {Probability} {Operators}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {27 },
     publisher = {mathdoc},
     volume = {_N_S_69},
     number = {83},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/}
}
TY  - JOUR
AU  - Nebojša Ikodinović
TI  - Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 27 
VL  - _N_S_69
IS  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/
LA  - en
ID  - PIM_2001_N_S_69_83_a4
ER  - 
%0 Journal Article
%A Nebojša Ikodinović
%T Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators
%J Publications de l'Institut Mathématique
%D 2001
%P 27 
%V _N_S_69
%N 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/
%G en
%F PIM_2001_N_S_69_83_a4
Nebojša Ikodinović. Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 27 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/