Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 27
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Rašković [3] introduced a conservative extension
of classical propositional logic with some probability operators
and proved corresponding completeness and decidability theorem.
We prove the Robinson's consistency and Craig interpolation for this
logic.
Classification :
03C70
@article{PIM_2001_N_S_69_83_a4,
author = {Neboj\v{s}a Ikodinovi\'c},
title = {Craig {Interpolation} {Theorem} for {Classical} {Propositional} {Logic} with some {Probability} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {27 },
publisher = {mathdoc},
volume = {_N_S_69},
number = {83},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/}
}
TY - JOUR AU - Nebojša Ikodinović TI - Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators JO - Publications de l'Institut Mathématique PY - 2001 SP - 27 VL - _N_S_69 IS - 83 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/ LA - en ID - PIM_2001_N_S_69_83_a4 ER -
%0 Journal Article %A Nebojša Ikodinović %T Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators %J Publications de l'Institut Mathématique %D 2001 %P 27 %V _N_S_69 %N 83 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/ %G en %F PIM_2001_N_S_69_83_a4
Nebojša Ikodinović. Craig Interpolation Theorem for Classical Propositional Logic with some Probability Operators. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 27 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a4/