Comments on Ultraproducts of Forcing Systems
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 18

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We discuss the conditions under which the ``Łoś theorem" holds for ultraproducts of forcing systems.
Classification : 03C25 03C20 03C52
Keywords: Ultraproducts of forcing systems, $n$-Finite forcing, Generic model
@article{PIM_2001_N_S_69_83_a3,
     author = {Milan Grulovi\'c},
     title = {Comments on {Ultraproducts} of {Forcing} {Systems}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {18 },
     publisher = {mathdoc},
     volume = {_N_S_69},
     number = {83},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a3/}
}
TY  - JOUR
AU  - Milan Grulović
TI  - Comments on Ultraproducts of Forcing Systems
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 18 
VL  - _N_S_69
IS  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a3/
LA  - en
ID  - PIM_2001_N_S_69_83_a3
ER  - 
%0 Journal Article
%A Milan Grulović
%T Comments on Ultraproducts of Forcing Systems
%J Publications de l'Institut Mathématique
%D 2001
%P 18 
%V _N_S_69
%N 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a3/
%G en
%F PIM_2001_N_S_69_83_a3
Milan Grulović. Comments on Ultraproducts of Forcing Systems. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 18 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a3/