Taylor Series of the Natural Powers of the Pick Function and Applications
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 101
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We find the simplest forms of the Taylor series of the
natural powers of the Pick function. As an application we give a new
proof of our formula (13) which throws a bridge over the de Branges
proof and the Weinstein proof of the Bieberbach conjecture.
Classification :
30B10 30C50 30C10 33C05 33C20
Keywords: Pick function, Koebe function, natural powers of the Pick function, Taylor series, Gauss and Goursat hypergeometric polynomials, de Branges functions, Bieberbach conjecture, de Branges proof, Weinstein proof.
Keywords: Pick function, Koebe function, natural powers of the Pick function, Taylor series, Gauss and Goursat hypergeometric polynomials, de Branges functions, Bieberbach conjecture, de Branges proof, Weinstein proof.
@article{PIM_2001_N_S_69_83_a12,
author = {Pavel G. Todorov},
title = {Taylor {Series} of the {Natural} {Powers} of the {Pick} {Function} and {Applications}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
year = {2001},
volume = {_N_S_69},
number = {83},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a12/}
}
Pavel G. Todorov. Taylor Series of the Natural Powers of the Pick Function and Applications. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 101 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a12/