A Littlewood-Paley theorem for subharmonic functions
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 77 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $u(z)>0$ $(|z|1)$ is a subharmonic function of class $C^2$ such that $\Delta u$ is subharmonic and if $\int u(re^{it})\,dt$ $(q>1)$ is bounded when $0
Classification : 30D55
Keywords: Riesz' measure of a subharmonic function
@article{PIM_2000_N_S_68_82_a8,
     author = {Miroslav Pavlovi\'c},
     title = {A {Littlewood-Paley} theorem for subharmonic functions},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {77 },
     publisher = {mathdoc},
     volume = {_N_S_68},
     number = {82},
     year = {2000},
     zbl = {0966.30027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a8/}
}
TY  - JOUR
AU  - Miroslav Pavlović
TI  - A Littlewood-Paley theorem for subharmonic functions
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 77 
VL  - _N_S_68
IS  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a8/
LA  - en
ID  - PIM_2000_N_S_68_82_a8
ER  - 
%0 Journal Article
%A Miroslav Pavlović
%T A Littlewood-Paley theorem for subharmonic functions
%J Publications de l'Institut Mathématique
%D 2000
%P 77 
%V _N_S_68
%N 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a8/
%G en
%F PIM_2000_N_S_68_82_a8
Miroslav Pavlović. A Littlewood-Paley theorem for subharmonic functions. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 77 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a8/