A Littlewood-Paley theorem for subharmonic functions
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 77
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $u(z)>0$ $(|z|1)$ is a subharmonic function of class
$C^2$ such that $\Delta u$ is subharmonic and if
$\int u(re^{it})\,dt$ $(q>1)$ is bounded when $0
@article{PIM_2000_N_S_68_82_a8,
author = {Miroslav Pavlovi\'c},
title = {A {Littlewood-Paley} theorem for subharmonic functions},
journal = {Publications de l'Institut Math\'ematique},
pages = {77 },
publisher = {mathdoc},
volume = {_N_S_68},
number = {82},
year = {2000},
zbl = {0966.30027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a8/}
}
Miroslav Pavlović. A Littlewood-Paley theorem for subharmonic functions. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 77 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a8/