Best lambda-approximations for analytic functions of rapid growth on the unit disc
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 72 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give a solution of the best $\lambda$-approximation for analytic functions of rapid growth such as, for example, the Hardy-Ramanujan generating partition function. Using Ingham Tauberian Theorem we give some interesting applications of our results. An essential role here is played by Karamata's class of regularly varying functions.
Classification : 30E10 26A12
@article{PIM_2000_N_S_68_82_a7,
     author = {Slavko Simi\'c},
     title = {Best lambda-approximations for analytic functions of rapid growth on the unit disc},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {72 },
     publisher = {mathdoc},
     volume = {_N_S_68},
     number = {82},
     year = {2000},
     zbl = {0966.30032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/}
}
TY  - JOUR
AU  - Slavko Simić
TI  - Best lambda-approximations for analytic functions of rapid growth on the unit disc
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 72 
VL  - _N_S_68
IS  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/
LA  - en
ID  - PIM_2000_N_S_68_82_a7
ER  - 
%0 Journal Article
%A Slavko Simić
%T Best lambda-approximations for analytic functions of rapid growth on the unit disc
%J Publications de l'Institut Mathématique
%D 2000
%P 72 
%V _N_S_68
%N 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/
%G en
%F PIM_2000_N_S_68_82_a7
Slavko Simić. Best lambda-approximations for analytic functions of rapid growth on the unit disc. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 72 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/