Best lambda-approximations for analytic functions of rapid growth on the unit disc
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 72
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give a solution of the best $\lambda$-approximation for
analytic functions of rapid growth such as, for example, the
Hardy-Ramanujan generating partition function. Using Ingham Tauberian
Theorem we give some interesting applications of our results. An
essential role here is played by Karamata's class of regularly varying
functions.
@article{PIM_2000_N_S_68_82_a7,
author = {Slavko Simi\'c},
title = {Best lambda-approximations for analytic functions of rapid growth on the unit disc},
journal = {Publications de l'Institut Math\'ematique},
pages = {72 },
publisher = {mathdoc},
volume = {_N_S_68},
number = {82},
year = {2000},
zbl = {0966.30032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/}
}
TY - JOUR AU - Slavko Simić TI - Best lambda-approximations for analytic functions of rapid growth on the unit disc JO - Publications de l'Institut Mathématique PY - 2000 SP - 72 VL - _N_S_68 IS - 82 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/ LA - en ID - PIM_2000_N_S_68_82_a7 ER -
Slavko Simić. Best lambda-approximations for analytic functions of rapid growth on the unit disc. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 72 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a7/