Rectangular loops
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 59 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Rectangular groups i.e. direct products of rectangular bands and groups play a significant role in the semilattice decomposition theory of semigroups. In our attempt to generalize this theory to groupoids, we start by investigating {\it rectangular loops} i.e. direct products of rectangular bands and loops. The standard method of R. A. Knoebel gives us an axiom system for rectangular loops consisting of 21 identities in an extended language. We give a simpler and more intuitive equivalent system of only 12 identities. Other important properties of rectangular loops are derived.
Classification : 20N02
Keywords: groupoid, rectangular loop, axiomatization, axiom independence, word problem
@article{PIM_2000_N_S_68_82_a5,
     author = {Aleksandar Krape\v{z}},
     title = {Rectangular loops},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {59 },
     publisher = {mathdoc},
     volume = {_N_S_68},
     number = {82},
     year = {2000},
     zbl = {0971.20047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a5/}
}
TY  - JOUR
AU  - Aleksandar Krapež
TI  - Rectangular loops
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 59 
VL  - _N_S_68
IS  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a5/
LA  - en
ID  - PIM_2000_N_S_68_82_a5
ER  - 
%0 Journal Article
%A Aleksandar Krapež
%T Rectangular loops
%J Publications de l'Institut Mathématique
%D 2000
%P 59 
%V _N_S_68
%N 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a5/
%G en
%F PIM_2000_N_S_68_82_a5
Aleksandar Krapež. Rectangular loops. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 59 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a5/