Dominating properties of star complements
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 46 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a finite graph with an eigenvalue $\mu$ of multiplicity $m$. A set $X$ of $m$ vertices in $G$ is called a {\em star set} for $\mu$ in $G$ if $\mu$ is not an eigenvalue of the {\em star complement} $G-X$. Various dominating properties of the vertices in $G-X$ are established and discussed in the context of memoryless communication networks.
Classification : 05C50 05C70
@article{PIM_2000_N_S_68_82_a3,
     author = {Bolian Liu and Peter Rowlinson},
     title = {Dominating properties of star complements},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {46 },
     publisher = {mathdoc},
     volume = {_N_S_68},
     number = {82},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a3/}
}
TY  - JOUR
AU  - Bolian Liu
AU  - Peter Rowlinson
TI  - Dominating properties of star complements
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 46 
VL  - _N_S_68
IS  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a3/
LA  - en
ID  - PIM_2000_N_S_68_82_a3
ER  - 
%0 Journal Article
%A Bolian Liu
%A Peter Rowlinson
%T Dominating properties of star complements
%J Publications de l'Institut Mathématique
%D 2000
%P 46 
%V _N_S_68
%N 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a3/
%G en
%F PIM_2000_N_S_68_82_a3
Bolian Liu; Peter Rowlinson. Dominating properties of star complements. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 46 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a3/