Convergence in (2m)-th mean for perturbed stochastic integrodifferential equations
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 133

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Our goal is to study the (2m)-th asymptotic behavior for the family of stochastic processes $x^{\varepsilon}=(x_t^{\varepsilon}$, $t\in [t_0,\infty))$, depending on a ``small" parameter $\varepsilon\in (0,1)$. We consider the case when $x^{\varepsilon}$ is the solution of an Ito's stohastic integro-differential equation whose coefficients are additionally perturbed. We compare the solution $x^{\varepsilon}$ with the solution of an appropriate unperturbed equation of the equal type. Sufficient conditions under which these solutions are close in the $(2m)$-th moment sense on intervals whose length tends to infinity are given.
Classification : 60H10
@article{PIM_2000_N_S_68_82_a14,
     author = {Svetlana Jankovi\'c and Miljana Jovanovi\'c},
     title = {Convergence in (2m)-th mean for perturbed stochastic integrodifferential equations},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {133 },
     publisher = {mathdoc},
     volume = {_N_S_68},
     number = {82},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a14/}
}
TY  - JOUR
AU  - Svetlana Janković
AU  - Miljana Jovanović
TI  - Convergence in (2m)-th mean for perturbed stochastic integrodifferential equations
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 133 
VL  - _N_S_68
IS  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a14/
LA  - en
ID  - PIM_2000_N_S_68_82_a14
ER  - 
%0 Journal Article
%A Svetlana Janković
%A Miljana Jovanović
%T Convergence in (2m)-th mean for perturbed stochastic integrodifferential equations
%J Publications de l'Institut Mathématique
%D 2000
%P 133 
%V _N_S_68
%N 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a14/
%G en
%F PIM_2000_N_S_68_82_a14
Svetlana Janković; Miljana Jovanović. Convergence in (2m)-th mean for perturbed stochastic integrodifferential equations. Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 133 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a14/