Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 103
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the context of P.J. Ryan's problem on the equivalence of the
conditions $R \cdot R = 0$ and $R \cdot S = 0$ for hypersurfaces, we
prove that there is indeed equivalence for hypersurfaces of
semi-Euclidean spaces in any dimension, under an additional curvature
condition of semisymmetric type.
@article{PIM_2000_N_S_67_81_a9,
author = {Marta Dabrowska and Filip Defever and Ryszard Deszcz and Dorota Kowalczyk},
title = {Semisymmetry and {Ricci-symmetry} for {Hypersurfaces} of {Semi-euclidean} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {103 },
year = {2000},
volume = {_N_S_67},
number = {81},
zbl = {0951.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/}
}
TY - JOUR AU - Marta Dabrowska AU - Filip Defever AU - Ryszard Deszcz AU - Dorota Kowalczyk TI - Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces JO - Publications de l'Institut Mathématique PY - 2000 SP - 103 VL - _N_S_67 IS - 81 UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/ LA - en ID - PIM_2000_N_S_67_81_a9 ER -
%0 Journal Article %A Marta Dabrowska %A Filip Defever %A Ryszard Deszcz %A Dorota Kowalczyk %T Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces %J Publications de l'Institut Mathématique %D 2000 %P 103 %V _N_S_67 %N 81 %U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/ %G en %F PIM_2000_N_S_67_81_a9
Marta Dabrowska; Filip Defever; Ryszard Deszcz; Dorota Kowalczyk. Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 103 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/