Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 103 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the context of P.J. Ryan's problem on the equivalence of the conditions $R \cdot R = 0$ and $R \cdot S = 0$ for hypersurfaces, we prove that there is indeed equivalence for hypersurfaces of semi-Euclidean spaces in any dimension, under an additional curvature condition of semisymmetric type.
Classification : 53B20 53B30
@article{PIM_2000_N_S_67_81_a9,
     author = {Marta Dabrowska and Filip Defever and Ryszard Deszcz and Dorota Kowalczyk},
     title = {Semisymmetry and {Ricci-symmetry} for {Hypersurfaces} of {Semi-euclidean} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {103 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {0951.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/}
}
TY  - JOUR
AU  - Marta Dabrowska
AU  - Filip Defever
AU  - Ryszard Deszcz
AU  - Dorota Kowalczyk
TI  - Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 103 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/
LA  - en
ID  - PIM_2000_N_S_67_81_a9
ER  - 
%0 Journal Article
%A Marta Dabrowska
%A Filip Defever
%A Ryszard Deszcz
%A Dorota Kowalczyk
%T Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces
%J Publications de l'Institut Mathématique
%D 2000
%P 103 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/
%G en
%F PIM_2000_N_S_67_81_a9
Marta Dabrowska; Filip Defever; Ryszard Deszcz; Dorota Kowalczyk. Semisymmetry and Ricci-symmetry for Hypersurfaces of Semi-euclidean Spaces. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 103 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a9/