New Special Geodesic Mappings of Generalized Riemannian Spaces
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 92 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define $\underset\theta\to R$-projective geodesic mappings $(\theta=1,\dots,5)$ of two generalized Riemannian spaces and obtain some invariant geometric objects of these mappings, generalizing Weyl's tensor. Also, we define $\underset\theta\to R$-projectively flat generalized Riemannian spaces $G\overline R_N$ and find necessary conditions for the space $GR_N$ to be $\underset\theta\to R$-projectively flat.
Classification : 53B05
@article{PIM_2000_N_S_67_81_a8,
     author = {Mi\'ca Stankovi\'c and Svetislav Min\v{c}i\'c},
     title = {New {Special} {Geodesic} {Mappings} of {Generalized} {Riemannian} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {92 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {1013.53009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/}
}
TY  - JOUR
AU  - Mića Stanković
AU  - Svetislav Minčić
TI  - New Special Geodesic Mappings of Generalized Riemannian Spaces
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 92 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/
LA  - en
ID  - PIM_2000_N_S_67_81_a8
ER  - 
%0 Journal Article
%A Mića Stanković
%A Svetislav Minčić
%T New Special Geodesic Mappings of Generalized Riemannian Spaces
%J Publications de l'Institut Mathématique
%D 2000
%P 92 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/
%G en
%F PIM_2000_N_S_67_81_a8
Mića Stanković; Svetislav Minčić. New Special Geodesic Mappings of Generalized Riemannian Spaces. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 92 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/