New Special Geodesic Mappings of Generalized Riemannian Spaces
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 92
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We define $\underset\theta\to R$-projective geodesic mappings
$(\theta=1,\dots,5)$ of two generalized Riemannian spaces and obtain
some invariant geometric objects of these mappings, generalizing Weyl's
tensor. Also, we define $\underset\theta\to R$-projectively flat
generalized Riemannian spaces $G\overline R_N$ and find necessary
conditions for the space $GR_N$ to be $\underset\theta\to
R$-projectively flat.
@article{PIM_2000_N_S_67_81_a8,
author = {Mi\'ca Stankovi\'c and Svetislav Min\v{c}i\'c},
title = {New {Special} {Geodesic} {Mappings} of {Generalized} {Riemannian} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {92 },
publisher = {mathdoc},
volume = {_N_S_67},
number = {81},
year = {2000},
zbl = {1013.53009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/}
}
TY - JOUR AU - Mića Stanković AU - Svetislav Minčić TI - New Special Geodesic Mappings of Generalized Riemannian Spaces JO - Publications de l'Institut Mathématique PY - 2000 SP - 92 VL - _N_S_67 IS - 81 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/ LA - en ID - PIM_2000_N_S_67_81_a8 ER -
Mića Stanković; Svetislav Minčić. New Special Geodesic Mappings of Generalized Riemannian Spaces. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 92 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a8/